2
|
Задача 377. Двойственные числапостоянный адрес задачи: http://www.diofant.ru/problem/1525/показать код для вставки на свой сайт >> |
Задачу решили:
2
всего попыток:
3
поделиться задачей:
|
|
Задача опубликована:
28.03.11 08:00
Прислал:
admin
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
1
класс:
11 и старше
баллы: 100
Темы:
арифметика
|
|
Возьмем некоторое вещественное число x, и будем рассматривать его рациональные приближения, записывая их в виде несократимой дроби p/q.
Для данного x назовем наилучшим приближением с максимальным знаменателем d такое рациональное число r/s, для которого
1. s ≤ d
2. для любого лучшего рационального приближения p/q знаменатель q будет больше, чем d (из |x-p/q|<|x-r/s| следует q > d).
Как правило, у вещественных чисел имеется только одно наилучшее приближение с выбранным максимальным знаменателем. Однако есть и исключения. Например, число 9/40 имеет два наилучших приближения для максимального знаменателя 1/6, а именно 1/4 и 1/5. Если хотя бы для одного максимального знаменателя число имеет два различных наилучших приближения, мы будем называть такое число двойственным. Ясно, что все двойственные числа являются рациональными.
Сколько существует двойственных чисел x = p/q, 1/30 ≤ x < 1/20, у которых знаменатель q не превышает 108?
Если Вы не можете ее решить, значит Вы не можете ее решить :-)