img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
+ 4

Задача 398. Сбалансированные числа

постоянный адрес задачи: http://www.diofant.ru/problem/1798/
показать код для вставки на свой сайт >>
Задачу решили: 5
всего попыток: 6
поделиться задачей:

Задача опубликована: 11.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

k-значное натуральное число называется сбалансированным, если сумма его первых  [k/2]  цифр его равна сумме последних  [k/2] цифр. Здесь  x  обозначает округление вверх, например, [π] = 4 и [5] = 5.
Понятно, что все палиндромы являются сбалансированными, как и число 13722.
Обозначим через T(n) сумму всех сбалансированных чисел, меньших, чем 10n.
Например, T(1) = 45, T(2) = 540 and T(5) = 334795890.
Найдите остаток от деления T(2000) на 315.

 
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)

Обсуждение Правила >>

Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.