1
|
Задача 410. Сумма Минковскогопостоянный адрес задачи: http://www.diofant.ru/problem/1832/показать код для вставки на свой сайт >> |
Задачу решили:
1
всего попыток:
2
поделиться задачей:
|
|
Задача опубликована:
25.07.11 08:00
Прислал:
admin
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
2
класс:
11 и старше
баллы: 100
Темы:
планиметрия,
тригонометрия
|
|
Пусть Sn – правильный n-угольник, вершины которого vk (k = 1,2,…,n) имеют координаты:
Как обычно, под многоугольником понимается фигура, включающая и ограничивающую замкнутую ломаную, и внутреннюю область.
Рассмотрим две точки на плоскости с координатами (u,v) и (x,y). Их суммой будем называть точку с координатами (u+x,v+y).
Суммой Минковского, S+T двух плоских фигур S и T будем называть множество всевозможных сумм точек, одна из которых принадлежит S, а другая принадлежит T.
Например, сумма S3 + S4 представляет собой шестиугольник, окрашенный на рисунке в пурпурный цвет.
Рассмотрим фигуру S1500 + S1501 + … + S2500, представляющую собой многоугольник. Сколько у этого многоугольника сторон длиннее, чем 1/200?
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.