4
|
Задача 417. Полуделимые числапостоянный адрес задачи: http://www.diofant.ru/problem/1896/показать код для вставки на свой сайт >> |
Задачу решили:
5
всего попыток:
5
поделиться задачей:
|
|
Задача опубликована:
12.09.11 08:00
Прислал:
admin
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
1
класс:
11 и старше
баллы: 100
Темы:
алгебра
|
|
Для целого n≥4 определим нижний простой квадратный корень из n как наибольшее простое число, не превышающее √n. Обозначим это число через lps(n).
Аналогично, обозначим через ups(n) верхний простой квадратный корень из n, т.е. наименьшее простое число, большее или раное √n.
Например, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37.
Назовем число n≥4 полуделимым, если оно делится на lps(n) или на ups(n), но не кратно обоим этим числам одновременно. Первые три полуделимых числа – это 8, 10 и 12. Число 15 не является полуделимым, поскольку оно кратно и lps(15)=3, и ups(15)=5. Сумма первых трех полуделимых чисел равна 30. Сумма первых 92 полуделимых чисел равна 34825.
Найдите сумму первых 3711717 полуделимых чисел.
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.