4
|
Задача 425. Нечетные триплетыпостоянный адрес задачи: http://www.diofant.ru/problem/1940/показать код для вставки на свой сайт >> |
Задачу решили:
5
всего попыток:
12
поделиться задачей:
|
|
Задача опубликована:
24.10.11 08:00
Прислал:
admin
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
2
класс:
11 и старше
баллы: 100
Темы:
комбинаторика
|
|
Рассмотрим множество, состоящее из первых n натуральных чисел: {1,2,...,n}.
Обозначим через f(n,k) количество его k-элементных подмножеств, сумма элементов которых нечетна. Например, f(5,3) =4, поскольку множество {1,2,3,4,5} имеет четыре 3-элементных подмножества с нечетной суммой элементов: {1,2,4}, {1,3,5}, {2,3,4} и {2,4,5}.
Когда все три числа n, k и f(n,k) нечетны, будем говорить, что они образуют нечетный триплет, и обозначим через g(m) количество нечетных триплетов [n,k,f(n,k)] с n ≤ m.
Тогда g(10)=5, поскольку существует ровно 5 нечетных триплетов с n ≤ 10, а именно:
[1,1,f(1,1)=1], [5,1,f(5,1)=3], [5,5,f(5,5)=1], [9,1,f(9,1)=5] и[9,9,f(9,9)=1]
Найдите наименьшее m, при котором g(m) > 1018.
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.