img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
+ 0

Задача 438. Округленный квадратный корень

постоянный адрес задачи: http://www.diofant.ru/problem/2036/
показать код для вставки на свой сайт >>
Задачу решили: 2
всего попыток: 3
поделиться задачей:

Задача опубликована: 26.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Округлим квадратный корень из натурального числа n до ближайшего целого и будем называть полученный результат округленным квадратным корнем.
Теперь рассмотрим следующий алгоритм вычисления округленного квадратного корня, фактически являющийся модификацией формулы Герона для целочисленной арифметики:
Пусть d — количество знаков числа n,
x0 = 2?10(d-1)⁄2 для нечетных d, и
x0 = 7?10(d-2)⁄2 для четных d.
Будем вычислять последовательность xk
xk+1=[(xk+{n/xk})/2]
до тех пор, пока последовательные значения не совпадут: xk+1 = xk. Скобки [] - означают округление вниз, а {} - округление вверх.
Для примера вычислим округленный квадратный корень из 4321. Это четырехзначное число, поэтому x0 = 7 ? 10(4-2)⁄2 = 70.
x1=[(70+{4321/70})/2]=66
x2=[(66+{4321/66})/2]=66
Поскольку  x2 = x1,  двух итераций  оказалось достаточно, и мы нашли округленный квадратный корень, равный 66 (это правильный результат, поскольку квадратный корень из 4321 примерно равен 65,7343137…)
Описанный метод оказался удивительно эффективным. Например, для вычисления округленных квадратных корней из пятизначных чисел требуется не более 5 итераций. Существует всего 82 пятизначных числа (например, число 10097), для которых алгоритм требует пяти шагов.
Найдите максимальное число итераций, которое может потребоваться для вычисления округленного квадратного корня из 14-значного числа. В качестве ответа укажите количество 14-значных чисел, для вычисления округленного квадратного корня из которых требуется найденное максимальное число шагов. 

 
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)

Обсуждение Правила >>

Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.