img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
+ 0

Задача 471. Эйлеровы циклы на дугах

постоянный адрес задачи: http://www.diofant.ru/problem/2217/
показать код для вставки на свой сайт >>
Задачу решили: 0
всего попыток: 1
поделиться задачей:

Задача опубликована: 20.08.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Обозначим через C(x,y) окружность, проходящую через точки (x, y), (x,y+1), (x+1,y) и (x+1,y+1).

Обозначим через E(m,n) объединение m×n окружностей C(x,y), где 0≤x<m, 0≤y<n, а x, y, m и n – целые числа.

Эйлеровым циклом на E(m,n) называется замкнутый путь, включающий каждую дугу каждой окружности ровно один раз. В этой задаче мы будем рассматривать только те эйлеровы циклы, которые не имеют самопересечений. При этом участки цикла могут касаться друг друга в точках с целыми координатами, но не должны пересекаться.

На рисунке показан пример эйлерова цикла без самопересечений на E(3,3).

eu289.gif

Обозначим через L(m,n) количество эйлеровых циклов без самопересечений на E(m,n).

Например, L(1,2) = 2, L(2,2) = 37 и L(3,3) = 104290.

Найдите остаток от деления  L(6,13) на 613.

 
 
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)

Обсуждение Правила >>

Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.