6
|
Задача 52. Гексагональные числапостоянный адрес задачи: http://www.diofant.ru/problem/237/показать код для вставки на свой сайт >> |
Задачу решили:
49
всего попыток:
78
поделиться задачей:
|
|
Задача опубликована:
24.04.09 13:06
Прислал:
admin
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
1
класс:
8-10
баллы: 100
Темы:
арифметика
|
Лучшее решение:
levvol
|
Гексагональные числа, это числа получаемые по формуле n*(2n - 1). Вот первые 12 таких чисел:
1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276
Можно видеть что, H5 + H11 = H12. Но вот их разность H11 - H5 = 231 - 45 = 186 - не гексагональное.
Надо найти такую пару Hj и Hk гексагональных чисел, что модуль их разности |Hj - Hk| и сумма Hj + Hk тоже гексагональны. Такая пара не единственна, найдите минимальное значение |Hj - Hk| таких пар.
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.