0
|
Задача 532. Шестиугольный садпостоянный адрес задачи: http://www.diofant.ru/problem/2510/показать код для вставки на свой сайт >> |
Задачу решили:
4
всего попыток:
4
поделиться задачей:
|
|
Задача опубликована:
25.11.13 08:00
Прислал:
admin
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
2
класс:
8-10
баллы: 100
Темы:
планиметрия
|
|
Фруктовый сад имеет шестиугольную форму, а деревья в саду растут в вершинах треугольной решетки. На рисунке показан план такого сада со стороной n=5:
Из центра сада можно увидеть только часть деревьев, поскольку некоторые (они на рисунке обозначены зеленым цветом) заслонены другими, растущими ближе к наблюдателю. Легко подсчитать, что для сада со стороной n=5 количество заслоненных деревьев равно 30.
Обозначим через H(n) количество заслоненных деревьев для шестиугольного сада со стороной n.
Можно проверить, что H(5) = 30, H(10) = 138, а H(1000) = 1177848.
Найдите H(1234567890).
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.