6
|
Задача 1962. Чересполосная суммапостоянный адрес задачи: http://www.diofant.ru/problem/3726/показать код для вставки на свой сайт >> |
Задачу решили:
37
всего попыток:
46
поделиться задачей:
|
|
Рассматриваются различные наборы из семи неотрицательных целых чисел а1, а2, а3, а4, а5, а6, а7 такие, что 0<=а1<=а2<=а3<= а4<=а5<=а6<=а7 и а1+а2+а3+а4+а5+а6+а7=145. Чему может быть равна наименьшая сумма s=а1+а3+а5+а7?
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.