8
|
Задача 167. Почти равносторонние треугольникипостоянный адрес задачи: http://www.diofant.ru/problem/506/показать код для вставки на свой сайт >> |
Задачу решили:
21
всего попыток:
47
поделиться задачей:
|
|
Задача опубликована:
16.07.09 15:38
Прислал:
admin
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
1
класс:
8-10
баллы: 100
Темы:
арифметика
|
|
Легко показать, что не существует равносторонних треугольников, у которых и длина сторон, и площадь выражались бы целыми числами. Однако площадь "почти равностороннего" треугольника со сторонами 5-5-6 равна целому числу 12.
Мы будем называть "почти равносторонними" такие треугольники, у которых длины любых двух сторон не отличаются больше, чем на единицу.
Найдите суммарную площадь всех почти равносторонних треугольников, для каждого из которых площадь выражается целым числом, а длины сторон - целые числа, не превышающие одного миллиарда (1 000 000 000).
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.