4
|
Задача 295. Делители гауссовых целыхпостоянный адрес задачи: http://www.diofant.ru/problem/874/показать код для вставки на свой сайт >> |
Задачу решили:
6
всего попыток:
6
поделиться задачей:
|
|
Задача опубликована:
05.07.10 08:00
Прислал:
mikev
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
1
класс:
11 и старше
баллы: 100
Темы:
арифметика,
алгебра
|
|
Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
Однако, перейдя в область комплексных чисел, мы найдем два корня: x=i и x=-i.
Уравнение (x-3)2=-4 имеет два решения: x=3+2i и x=3-2i. Их называют комплексно-сопряженными.
Гауссовыми целыми называют комплексные числа a+bi, у которых a и b целые. Обычные целые числа тоже, конечно, являются гауссовыми целыми с b=0. Чтобы отличить их от гауссовых целых с b≠0, мы будем называть их "рациональными целыми". Гауссово целое будем называть делителем рационального целого n, если частное также является гауссовым целым.
Например, если мы делим 5 на 1+2i, получим
Поскольку 1-2i – гауссово целое, число 1+2i является делителем 5.
С другой стороны, 1+i не является делителем 5, поскольку .
Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Таким образом, число 5 имеет ровно 6 делителей с положительной вещественной частью: {1, 1 + 2i, 1-2i, 2 + i, 2-i, 5}.
В таблице приведены все делители с положительной вещественной частью первых пяти положительных рациональных целых.
n | Гауссовы делители с положительной вещественной частью |
Сумма этих делителей s(n) |
1 | 1 | 1 |
2 | 1, 1+i, 1-i, 2 | 5 |
3 | 1, 3 | 4 |
4 | 1, 1+i, 1-i, 2, 2+2i, 2-2i,4 | 13 |
5 | 1, 1+2i, 1-2i, 2+i, 2-i, 5 | 12 |
Для делителей с положительной вещественной частью .
Для 1 ≤ n ≤ 105, Σ s(n)=17924657155.
Найдите Σ s(n) для 1 ≤ n≤ 15·107.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)