8
|
Задача 238. Тройки чиселпостоянный адрес задачи: http://www.diofant.ru/problem/955/показать код для вставки на свой сайт >> |
Задачу решили:
20
всего попыток:
26
поделиться задачей:
|
|
Задача опубликована:
24.12.09 00:19
Прислал:
morph
(Дмитрий Дремов)
Источник:
Проект "Эйлер" (http://projecteuler.net)
Вес:
1
сложность:
3
класс:
11 и старше
баллы: 100
Темы:
арифметика
|
Лучшее решение:
bbny
|
Радикальное число для числа n, rad(n) это произведение всех различных простых множителей числа n. Например, 504 = 23*32*7, и rad(n) = 2*3*7 = 42.
Будем рассматривать тройки натуральных чисел (a, b, c) обладающие следующими свойствами:
1. НОД(a, b) = НОД(a, c) = НОД(b, c) = 1.
2. a < b
3. a + b = c
4. rad(abc) < c
Например, такой тройкой является (5, 27, 32):
НОД(5, 27) = НОД(5, 32) = НОД(27, 32) = 1
5 < 27
5 + 27 = 32
rad(4320) = 30 < 32
Для некоторых c имеется более одной такой тройки (a, b, c). До 10000 таких c всего 15.
Найдите сколько существует c меньших 100000, для которых существует более одной тройки (a, b, c), обладающих описанными выше свойствами.
(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Если Вы не можете ее решить, значит Вы не можете ее решить :-)
Обсуждение Правила >>
Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.