Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
1186
всего попыток:
7696
Сколько оборотов в сутки делает прямая, содержащая биссектрису угла между часовой и минутной стрелками? (Если угол нулевой, то эта прямая проходит по стрелкам, если развёрнутый — то перпендикулярна им.)
Задачу решили:
2914
всего попыток:
3530
Студент за 5 лет учения сдал 31 экзамен. В каждом следующем году он сдавал больше экзаменов, чем в предыдущем, а на пятом курсе сдал втрое больше экзаменов, чем на первом курсе. Сколько экзаменов он сдал на четвертом курсе?
Задачу решили:
363
всего попыток:
1106
Найдите наименьшее значение суммы двух различных целых положительных чисел, сумма квадратов которых является кубом некоторого целого числа, а сумма их кубов — квадратом другого целого числа.
Задачу решили:
896
всего попыток:
1663
Отец и сын катаются на коньках по кругу. Время от времени отец обгоняет сына. После того, как сын переменил направление своего движения на противоположное, они стали встречаться в 5 раз чаще. На сколько процентов скорость отца больше скорости сына?
Задачу решили:
820
всего попыток:
2328
Какое минимальное количество гирек требуется, чтобы на чашечных весах взвешивать с точностью до грамма разные предметы массой от 1 до 40 граммов? (Гирьки можно класть на любые чашки весов.)
Задачу решили:
665
всего попыток:
2181
Играют двое, один из них загадывает 5 натуральных двузначных чисел x1, x2, x3, x4, x5. Второму разрешается спрашивать, чему равна сумма a1·x1+a2·x2+a3·x3+a4·x4+a5·x5, где a1, a2, a3, a4, a5 — любые целые числа. Какое наименьшее число вопросов потребуется отгадывающему, чтобы узнать задуманные числа?
Задачу решили:
738
всего попыток:
1633
У основателя правящей династии, царя Ивана Первого, было четыре сына. У 10 из его потомков (по мужской линии) было по три сына, у 10 — по два, у 10 — по одному, а у остальных рождались только девочки или вообще детей не было. Сколько всего потомков (по мужской линии) было у Ивана Первого?
Задачу решили:
256
всего попыток:
940
Сколькими способами можно раскрасить грани одинаковых кубиков шестью красками (каждая грань одного цвета, а все грани разных цветов) так, чтобы никакие два из получившихся раскрашенных кубиков не были одинаковыми, т.е. не переходили один в другой ни при каких вращениях?
Задачу решили:
846
всего попыток:
1697
Васин счёт в банке составляет 2009 рублей. Банкоматы этого банка могут совершать операции только двух видов: снимать 700 рублей или класть 910 рублей. Какую максимальную сумму Вася может снять со счета, если других денег у него нет?
Задачу решили:
166
всего попыток:
397
Прямоугольный лист бумаги разрезают по прямой на две части. Одну из частей разрезают по прямой на две части. Одну из трёх полученных частей снова разрезают по прямой на две части. Одну из четырёх полученных частей снова разрезают по прямой на две части, и т.д. Какое наименьшее число разрезов нужно сделать, чтобы получить 100 семиугольников?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|