Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
76
всего попыток:
262
В далёкой стране к власти пришёл военный диктатор, который хочет стать президентом, победив на демократических выборах, организованных по следующей системе. В первом туре все избиратели объединяются в равные по численности группы, и от каждой группы большинством голосов избирается представитель для голосования во втором туре. Во втором туре все избранные в первом туре представители объединяются в равные группы и в каждой группе выбирают её представителя для голосования в третьем туре. И так далее: в последнем туре представители избирают президента. В стране ровно 5 760 000 избирателей, среди которых n человек безоговорочно поддерживают диктатора (поскольку состоят в регулярной армии). При каком минимальном n можно так организовать выборы, чтобы диктатор гарантированно был избран президентом? (При равенстве голосов в следующий тур проходят независимые кандидаты.) Диктатор сам заранее определяет количество туров и сколько представителей будут содержать группы в каждом туре — это число может меняться от тура к туру; он также может распределить своих сторонников по группам так, как ему выгодно. Любой избиратель может голосовать за себя, а сам диктатор входит в число n своих сторонников.
Задачу решили:
19
всего попыток:
473
Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями?
Задачу решили:
89
всего попыток:
339
Перед двумя игроками 4 кучки из спичек: в первой — 11, во второй — 29, в третьей — 37 и в четвёртой — 41 спичка. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из любой кучки по своему выбору — можно взять хоть всю кучку, но брать спички из разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из какой кучки должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите произведение количества взятых спичек и номера кучки.
Задачу решили:
228
всего попыток:
410
Найдите трёхзначное число, имеющее наибольшее число различных делителей.
Задачу решили:
161
всего попыток:
335
Есть 10 упаковок по 100 одинаковых монет в каждой. Есть несколько упаковок с фальшивыми монетами, вес каждой из которых на 0,1 грамма меньше, чем настоящей. Имеются весы, измеряющие вес с точностью до 0,1 грамма. За какое минимальное число взвешиваний можно выявить все упаковки с фальшивыми монетами? (Веса настоящих монеты известны. В каждой упаковке либо все монеты фальшивые, либо все настоящие. Упаковки можно вскрывать.)
Задачу решили:
147
всего попыток:
205
Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.
Задачу решили:
52
всего попыток:
187
Перед двумя игроками 5 кучек из спичек: в первой — 7, во второй — 10, в третьей — 18, в четвёртой — 19 и в пятой — 24 спички. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из одной или двух кучек по своему выбору — например, можно взять только одну спичку, а можно и все спички из двух кучек, но вообще не брать спичек или брать спички из трёх разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из каких кучек должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите общее количество взятых спичек.
(Эта игра очень похожа на "Игру в спички II"; единственное отличие — там разрешалось брать спички только из одной кучки, а здесь можно и из двух.)
Задачу решили:
226
всего попыток:
562
– А у тебя дети есть? – Три дочери. – Сколько им лет? – Если перемножить, то получится как раз мой возраст. И твой, впрочем, тоже. – Этой информации мне недостаточно... – А если сложить, то получится сегодняшнее число. Поразмыслив: – И этой информации мне недостаточно... – Средняя похожа на меня. – Вот теперь я знаю ответ на свой вопрос. Сколько лет средней дочери?
Задачу решили:
83
всего попыток:
465
Перед Вами 25 окопов в ряд. В каком-то из них сидит снайпер. У Вас в руках гранатомёт, позволяющий вдребезги разнести всё содержимое любого из окопов (сам окоп при этом остаётся цел). Сразу после того, как Вы делаете выстрел, снайпер по не известной Вам логике перебегает в соседний окоп (если Вы промазали). Остаться в том же окопе, равно как и перебежать дальше, чем в соседний окоп, он не может. Следующий выстрел. Перебежка. Выстрел. Перебежка. И так далее. Проблема в том, что ни снайпера, ни его перебежек Вы не видите. Какое минимальное число выстрелов Вам понадобится, чтобы гарантированно ликвидировать снайпера?
(Задача носит исследовательский характер, поскольку доказательства минимальности ответа, заложенного в систему, нам не известно. Надеемся, что участники предложат такое доказательство!)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|