Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
388
всего попыток:
753
p ∫|sin(2009x)|dx = ? 0
Задачу решили:
89
всего попыток:
327
Какое минимальное число различных решений, лежащих на отрезке [−π,π], может иметь тригонометрическое уравнение a cos(9x) + b sin(16x) + c cos(25x) + d sin(36x) = 0? (Решения данного уравнения зависят от значений его коэффициентов a, b, c и d.)
Задачу решили:
108
всего попыток:
494
В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Лиса может бегать по всей арене, а заяц лишь по её краю. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.) Пояснения: лиса — это точка на круге, а заяц — на его окружности; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.
Задачу решили:
113
всего попыток:
188
В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.) Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.
Задачу решили:
209
всего попыток:
540
Сколько различных решений имеет уравнение log1/16x=(1/16)x?
Задачу решили:
131
всего попыток:
329
Сколько кубических сантиметров составляет объём пересечения двух (достаточно длинных) цилиндров, оси которых пересекаются под прямым углом, а диаметры равны 3 см?
Задачу решили:
89
всего попыток:
173
Рассмотрим десятичные записи степеней двойки: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,... и составим последовательность, состоящую из их первых цифр: 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4... Каждая цифра появляется среди первых n членов полученной последовательности с некоторой частотой, зависящей от n. Например, при n=12 частота появления 1 равна 1/4, 2 — 1/4, 3 — 1/12, 4 — 1/6, 5 — 1/12, 6 — 1/12, 8 — 1/12, а цифры 7 и 9 вообще не встречаются. Найдите число, обратное к предельной (при n→∞) частоте появления семёрки. Ответ округлите до ближайшего целого числа.
Задачу решили:
57
всего попыток:
213
При скачивании файла пользователю показывается прогноз оставшегося времени, которое рассчитывается исходя из предположения, что средние скорости скачивания всего файла и его уже скачанной части одинаковы. Через 20 секунд после начала закачки файла размером 100 Мбайт ожидаемое до её окончания время составляло 1 минуту и не изменялось после этого в течение 2 минут. Сколько Кбайт/сек составляла мгновенная скорость скачивания в конце этих 2 минут? Ответ округлите до ближайшего целого числа и помните, что 1 Мбайт = 1024 Кбайт.
Задачу решили:
49
всего попыток:
301
Вычислите
Задачу решили:
121
всего попыток:
172
Найдите минимальное значение выражения , где x и y — произвольные действительные числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|