Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
70
Из двухсот попарно различных отрезков выбирают по три и составляют прямоугольные треугольники. Каждый отрезок может участвовать в составлении нескольких треугольников. Какое максимальное количество треугольников можно составить из таких отрезков?
Задачу решили:
49
всего попыток:
61
Все 80 натуральных делителей натурального числа n расположили в порядке возрастания. Оказалось, что делители с первого по четвертый образуют геометрическую прогрессию, делители с четвертого по седьмой - арифметическую прогрессию, а восьмой делитель меньше 200. Найти n.
Задачу решили:
51
всего попыток:
85
В ящике находятся 2013 черных и 2014 белых шаров. Из ящика извлекаются наугад два шара. Если их цвет оказывается одинаковым, то в ящик вместо вынутой пары опускается черный шар, если же цвета различные, то белый шар. Так происходит до тех пор, пока в ящике не останется один шар. Какого он цвета? Введите 1,если шар черный, и 2 –если шар белый.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|