Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
339
всего попыток:
593
За столом сидят девочки и мальчики, а на блюде перед ними — 31 булочка. Не все ребята знакомы. Сначала каждая девочка берёт с блюда и раздаёт по булочке каждому незнакомому мальчику, затем каждый мальчик берёт с блюда и раздаёт по булочке каждой знакомой девочке, и на блюде остаётся только 1 булочка. Девочек — 6. А сколько мальчиков?
(Задача моего школьного учителя математики.)
Задачу решили:
47
всего попыток:
101
В натуральном числе поменяли местами некоторые цифры, стоящие в четных позициях, не тронув цифры в нечетных позициях. Пусть C - сумма цифр разности исходного и полученного чисел и 0<=C<=40. Укажите сумму всех возможных значений C.
Задачу решили:
29
всего попыток:
192
Из целого числа A вычли число B, полученное перестановкой цифр A. A-B состоит из 2013 единиц. Все эти числа (A, B, A-B, 2013) даны в n-ичной системе счисления. Введите (в 10-ичной системе счисления) сумму всех возможных значений n.
Задачу решили:
52
всего попыток:
72
В натуральном числе W все N цифр различны и расположены в порядке убывания. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1419. Найти все такие числа W и ввести их сумму.
Задачу решили:
71
всего попыток:
105
Числовой ребус ОСЕНЬ - ЗИМА = ВЕСНА (как обычно, разные буквы обозначают разные цифры) имеет много решений, поэтому будем рассматривать только те из них, в которых Ь=0 (мягкий знак обозначает нуль). Найдите максимальное значение слова ВЕСНА.
Задачу решили:
45
всего попыток:
166
В натуральном числе W все N цифр различны. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1353. Определить все возможные значения N, для которых такие числа существуют, и ввести их сумму.
Задачу решили:
41
всего попыток:
113
Доска 16х16 разделена на квадраты со стороной длины 1. Сколько существует различных отрезков целочисленной длины с концами в узлах доски? (Поворачивать доску нельзя, т.е. для доски 1х1 ответ - 4.)
Задачу решили:
118
всего попыток:
283
30 школьников выстроили в строй друг за другом. Никакие 2 девочки не стоят через нечетное количество человек. Найти максимальное количество девочек.
Задачу решили:
62
всего попыток:
105
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло на одного человека больше, чем в предыдущем. Ввести сумму всех возможных значений N.
Задачу решили:
70
всего попыток:
122
120 школьников выстроили друг за другом. Никакие две девочки не стоят ни дружка за дружкой, ни через семь человек. Найти максимальное количество девочек.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|