Лента событий:
fortpost решил задачу "10-элементные подмножества" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
51
На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням. У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.
Задачу решили:
38
всего попыток:
41
Расшифруйте пример на умножение С * НОВЫМ = ГОДОМ, в котором одинаковым буквам соответствуют одинаковые цифры и разным буквам – разные цифры, причем, в примере используются цифры от 0 до 7. В ответе запишите одиннадцатизначное число СНОВЫМГОДОМ.
Задачу решили:
31
всего попыток:
36
В куб вписаны три равных октаэдра. Две вершины каждого октаэдра лежат в центрах противоположных граней куба, а другие четыре вершины – середины ребер куба, перпендикулярных этим граням. Многогранник, являющийся объединением этих трех октаэдров, изображен на рисунке. Какую часть куба составляет объем этого многогранника?
Задачу решили:
24
всего попыток:
64
На рисунке приведен фрагмент школьного трафарета с четырьмя правильными многоугольниками. Начертите их на бумаге и выясните, какие из этих многоугольников можно разрезать на четыре равнобедренных треугольника, среди которых нет равных? (Треугольники нельзя складывать из более мелких частей.) Если можно разрезать, то ставим 1, если нельзя, то ставим 0, и, таким образом, ответ записывается четырехзначным числом, состоящем из нулей и единиц, порядок которых определяет расположение многоугольников на трафарете слева на право.
Задачу решили:
24
всего попыток:
39
В треугольник Рело вписан правильный шестиугольник (см. рис.). Найдите площадь шестиугольника, если |АВ|=65.
Задачу решили:
19
всего попыток:
100
В кружки фигуры, изображенной на рисунке, расставлены натуральные числа от 1 до 49, и в каждом квадрате найдена сумма четырех чисел, расположенных в его вершинах, после чего квадраты с одинаковыми суммами закрашены одним цветом. В этой расстановке максимум одинаковых сумм равен числу зеленых клеток, то есть 7. Расставьте эти числа в другом порядке, просуммируйте четверки чисел и раскрасьте квадраты указанным образом. В ответе укажите наибольшее возможное число одноцветных квадратов. Уточним, рассматриваются только квадраты равные закрашенным.
Задачу решили:
16
всего попыток:
33
Куб 3х3х3 разбит на единичные кубики, все их вершины отмечены точками. Найдите число всех правильных треугольников, вершинами которых являются отмеченные точки. Три из них изображены на рисунке.
Задачу решили:
18
всего попыток:
74
Из четырех шнуров сплетена коса (рис. слева). Верхние концы шнуров неподвижны, они прикреплены к основе. Нижние концы шнуров прикреплены к магнитам 1-2-4-5, выстроенным в ряд на этой же основе. За счёт одного свободного магнита 3 положение нижних концов шнуров можно менять. Перемещение нижнего конца шнура с одного магнита на другой называется ходом. За какое наименьшее число ходов можно расплести косу, то есть добиться положения, в котором никакие два шнура не пересекаются, и при этом нижние концы шнуров по-прежнему занимают позиции 1-2-4-5 (рис. справа)?
Задачу решили:
20
всего попыток:
32
В куб ABCDA1B1C1D1 вписан правильный тетраэдр D1AB1C. Куб, вместе c тетраэдром, вращается вокруг диагонали BD1 куба. При этом образуются два тела вращения: одно задается вращением куба, другое – вращением тетраэдра. Найдите объёмы этих двух тел вращения, и в ответе укажите отношение меньшего объёма к большему.
Задачу решили:
22
всего попыток:
56
В квадратной таблице 360х360 строки и столбцы «пронумерованы» числами от 1° до 360°. В каждой ячейке этой таблицы записано число, равное произведению синуса «номера» строки на косинус «номера» столбца. Сколько рациональных чисел в этой таблице?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|