Лента событий:
Kf_GoldFish решил задачу "10-элементные подмножества" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
32
В квадратной таблице nxn проведена несамопересекающая ломаная, все звенья которой лежат на внутренних перегородках между клетками 1х1. Ломаная делит таблицу на две части, клетки одной части закращена черным. При этом оказалось, что в таблице число бело-белых соседних клеток равно числу бело-черных соседних клеток и равно числу черно-черных соседних клеток. Найдите длину ломаной, если известно, что её длина в 66 раз больше стороны n данной таблицы. Например, в таблице 3х3 проведена ломаная АВС длиной 4. Здесь каждого типа соседних клеток по 4.
Задачу решили:
27
всего попыток:
50
Есть три коробки: в первой коробке 97 камней, во второй – 104, а в третьей коробке камней нет. За один ход берут по одному камню из любых двух коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов. В первой коробке оказался 1 камень. Какое наибольшее число камней могло оказаться в третьей коробке?
Задачу решили:
22
всего попыток:
43
Две равные фигуры сложены из единичных кубиков, одна из белых кубиков, другая – из черных, причем, из этих двух фигур можно сложить куб n×n×n без пустот внутри. Оказалось, что в сложенном кубе число бело-белых соседних кубиков (т. е. имеющих общую грань) равно числу бело-черных соседних кубиков и равно числу черно-черных соседних кубиков. При каком n площадь поверхности одной из фигур в два раза больше площади поверхности куба.
Задачу решили:
17
всего попыток:
37
Любитель комбинаторной геометрии каждый год рисует правильный треугольник, длина стороны которого равна номеру этого года, и прямыми параллельными сторонам треугольника делит его на правильные треугольники со стороной 1. В полученной таким образом треугольной сетке он закрашивает несколько треугольных ячеек так, чтобы они не пересекались, и при этом старается закрасить все узлы треугольной сетки. В 2022 году любителю не удалось это сделать. В каком ближайшем году он сможет закрасить сетку нужным образом? На рисунке приведен пример неудачной раскраски сетки, так как остались три незакрашенных узла.
Задачу решили:
30
всего попыток:
38
В окружности с центром O построен правильный шестиугольник KOFPDL так, что его вершина D лежит на окружности. Из точки B, диаметрально противоположной точке D, проведены две хорды AB и BC, проходящие через вершины K и F шестиугольника соответственно. Найти отношение площади шестиугольника KOFPDL к площади четырехугольника ABCD.
Задачу решили:
19
всего попыток:
21
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. Для каких простых чисел n начиная с 2 и не превосходящих 1000, число полученных частей в треугольнике является квадратным? В ответе укажите сумму всех таких n. На рисунке приведен равносторонний треугольник со стороной 6, в который вписаны 5 меньших равносторонних треугольников.
Задачу решили:
6
всего попыток:
26
На плоскости можно провести несколько прямых так, что они, пересекаясь друг с другом, образуют несколько не перекрывающихся пятиконечных звезд, употребив при этом наименьшее число прямых. Например, рисунке показано, как 1 звезду нарисовать 5 прямыми, 3 звезды нарисовать 8 прямыми, как 3 звезды нарисовать 9 прямыми. Как нарисовать 7 звезд проведя наименьшее число прямых? В ответе укажите число прямых. Важно учитывать, что в предложенной конструкции при продолжении прямых не должны появляться новые звезды.
Задачу решили:
17
всего попыток:
24
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Для каких простых чисел n, начиная с 2 и не превосходящих 100, число полученных частей в квадрате является простым? В ответе укажите сумму всех таких n. На рисунке приведен квадрат со стороной 4, в который вписаны 3 меньших квадрата.
Задачу решили:
20
всего попыток:
27
Показывая текущее время в часах и минутах, цифры на табло электронных часов могут располагаться строго по возрастанию, например, 0:45 или строго по убыванию, например, 8:30. Посчитайте в течение суток число различных показаний в обоих случаях. В ответе запишите отношение меньшего числа к большему.
Задачу решили:
24
всего попыток:
30
n-ый член последовательности 1, 6, 8, 20, 21, 40, 40, 66, 65, 98, 96, … — это число бесконечной таблицы Пифагора, которого достигает шахматный конь, сделавший n ходов, двигаясь по бесконечной ломаной линии, начиная с числа 1. Маршрут шахматного коня представляет собой бесконечную зигзагообразную ломаную линию, начало которой изображено на рисунке для таблицы 13х13. Все звенья ломаной имеют одинаковую длину и равны длине прыжка шахматного коня. Соседние звенья ломаной перпендикулярны, попеременно меняют направление влево, вправо, влево, вправо, ... Пусть a0=1, a1=6, a2=8. Найдите a111.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|