Лента событий:
MikeNik добавил комментарий к задаче "Целочисленные точки на эллипсах - 3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
65
Ковер Серпинского представляет собой бесконечное разбиение квадрата на меньшие квадраты. Построение выполняется поэтапно: на первом шаге исходный квадрат разбивается на девять равных квадратов и центральный квадрат закрашивается; на втором этапе каждый из оставшихся незакрашенных квадратов разбивается на девять меньших квадратов и центральный квадрат закрашивается, и так до бесконечности. На рисунке показаны разбиения квадрата, которые получаются после первых трех шагов. Сколько закрашенных и незакрашенных квадратов вместе получается на пятом шаге построения ковра Серпинского?
Задачу решили:
47
всего попыток:
90
На сторонах прямоугольного треугольника вне его построены три квадрата. Стороны квадрата ABCD параллельны катетам треугольника и делят площадь каждого из трёх квадратов на две равные части. Найдите сторону квадрата ABCD, если катеты данного треугольника равны 18 и 126.
Задачу решили:
32
всего попыток:
85
На каждой стороне треугольника отмечено по две точки, делящие её на три равных отрезка. Какую часть площади треугольника занимают эти три звезды, изображенные на рисунке?
Задачу решили:
43
всего попыток:
50
Найдите четырехзначное число, удовлетворяющее условию:
Задачу решили:
42
всего попыток:
46
Вычислите значение выражения .
Задачу решили:
26
всего попыток:
96
Десять пронумерованных фишек расположены в форме треугольника. За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?
Задачу решили:
39
всего попыток:
75
Четыре равносторонних треугольника расположены внутри большого квадрата так, что образовался еще один, малый, квадрат. Найдите сумму площадей этих четырех равносторонних треугольников, если сумма площадей большого и малого квадратов равна 64√3.
Задачу решили:
38
всего попыток:
46
В натуральном ряду чисел найдите отрезок [m;n], сумма всех чисел которого равна s, причем числа m, n и s - различные квадраты. В ответе укажите наименьшую возможную сумму s.
Задачу решили:
20
всего попыток:
68
На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке. Сколько треугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100? Обратите внимание, что здесь кроме красных и белых треугольников имеются красно-белые треугольники.
Задачу решили:
51
всего попыток:
54
Трехзначное число в русском языке записывается тремя словами. Эти слова без пробелов написали на прозрачной клетчатой пленке в форме квадрата 13х13 так, что каждая буква находится в квадрате 2х2. Затем этот квадратный лист сложили вдвое, перегнув по горизонтальной оси симметрии, пары букв наложились друг на друга, образовав символы, похожие на китайские иероглифы. Это изображено на рисунке слева. Потом лист развернули и сложили вдвое, перегнув по вертикальной оси симметрии квадратного листа. Получилась вторая группа иероглифов, изображенная на рисунке в центре. Сравнивая соответствующие "иероглифы" и зная принцип их получения, восстановите первоначальный текст и расшифруйте трехзначное число. В ответе запишите расшифрованное число. Для примера, на рисунке справа записано число 246 в формате, соответствующем условию задачи.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|