Лента событий:
MikeNik добавил комментарий к задаче "Целочисленные точки на эллипсах - 3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
47
В разных основаниях цилиндра проведены взаимно перпендикулярные диаметры AB и CD. Тетраэдр ABCD, вписанный в этот цилиндр, имеет объем равный 14. Объём цилиндра будет иметь вид kπ. В ответе укажите числовой множитель k.
Задачу решили:
16
всего попыток:
40
На листе бумаги нарисована одна из разверток куба, состоящая из шести равных квадратов. Сложите этот лист, сделав несколько сгибов, и сделайте только один прямолинейный разрез ножницами так, чтобы лист оказался разрезан на две части, одна из которых – развертка куба. В ответе укажите наименьшее число сгибов. Уточнения: сгиб – это поворот на 180° одной части фигуры вокруг некоторого отрезка прямой этой фигуры.
Задачу решили:
28
всего попыток:
52
В квадрате 3х3 находятся восемь квадратных фишек 1х1 со стрелками и одно свободное место в центре. Все стрелки направлены в центр квадрата (рис. слева). Передвигая поочередно фишки на свободное место добейтесь расположения фишек, чтобы все стрелки были направлены от центра (рис. справа). В ответе укажите наименьшее число ходов. Ход – это передвижение фишки на соседнее свободное место по вертикали или горизонтали.
Задачу решили:
36
всего попыток:
54
Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда. В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.
Задачу решили:
39
всего попыток:
49
На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье). Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами. В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами.
Задачу решили:
18
всего попыток:
32
В кубе ABCDA1B1C1D1 концы отрезка KF лежат на диагоналях AD1 и B1C и он параллелен плоскости основания ABCD. Точка М – точка пересечения отрезка KF с диагональной плоскостью A1BCD1. Геометрическое множество точек М образует линию, которая делит прямоугольник A1BCD1 на две части. Найдите отношение площади меньшей части к площади большей.
Задачу решили:
27
всего попыток:
80
В кубе ABCDA1B1C1D1 с ребром 6 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользит» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке. Объём тела, ограниченного этой поверхностью, будет иметь вид kπ. В ответе укажите числовой множитель k.
Задачу решили:
26
всего попыток:
39
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим «многоэтажные ёлочки», каждый этаж которых занимает три строки. Например, на рисунке изображена четырехэтажная елочка. Найдите сумму чисел, находящихся внутри контура 123-этажной ёлочки этой числовой пирамиды.
Задачу решили:
26
всего попыток:
36
Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.
Задачу решили:
26
всего попыток:
118
На каждой ветви графика уравнения |xy|=k взято по одной точке A, B, C и D так, что получился квадрат ABCD, со стороной k и имеющий с графиком общими точками только вершины. Найдите наибольшую площадь такого квадрата.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|