img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik добавил комментарий к задаче "Целочисленные точки на эллипсах - 3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 31
всего попыток: 54
Задача опубликована: 05.04.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Элементами матрицы 3х3 являются натуральные числа от 1 до 9, взятые по одному разу. Найдите наибольшее значение определителя этой матрицы.

(Задачу придумал и решил сам, в печати не приходилось встречать такую задачу. Не уверен, что ее до сих пор никто не придумал.)
Задачу решили: 38
всего попыток: 51
Задача опубликована: 14.04.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Четыре вершины правильного шестиугольника лежат на параболе у=х2, сторона шестиугольника, соединяющая оставшиеся две его вершины, пересекает ось Оу в точке А (смотри рисунок).

Шестиугольник и парабола

Найдите ординату точки А.

Задачу решили: 23
всего попыток: 47
Задача опубликована: 03.05.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Существует несколько фигурок тридомино, некоторые из них являются разверткой куба.

Тридомино

Выясните какие, и в ответе укажите количество таких тридомино.

Задачу решили: 30
всего попыток: 95
Задача опубликована: 12.05.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В квадрате построена 13-звенная ломаная, концами которой являются его диагональные вершины и соседние звенья перпендикулярны. Длины её звеньев – это целые числа от 1 до 13.

Ломаная в квадрате

В каком отношении эта ломаная делит площадь квадрата? В ответе укажите отношение площади желтой части к зеленой. 

Задачу решили: 27
всего попыток: 44
Задача опубликована: 21.05.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Внутри цилиндра расположен куб ABCDA1B1C1D1 так, что все его вершины лежат на поверхности цилиндра, причем вершины B и D1 совпадают с центрами оснований, а остальные вершины лежат на боковой поверхности цилиндра. Найдите объем цилиндра, если квадрат ребра куба равен 27. Объём цилиндра будет иметь вид kπ. В ответе укажите числовой множитель k.

Задачу решили: 27
всего попыток: 36
Задача опубликована: 02.06.21 08:00
Прислал: avilow img
Источник: По мотивам задачи Домашенко А.М.
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В равнобедренном треугольнике ABC с основанием AC=10, высотой BD=10 вписаны квадраты KLMN и DPRQ. Если треугольник ABC перегнуть по высоте BD, то треугольники ABD и BDC совпадут при наложении, а квадраты частично перекроются.

Два квадрата в треугольнике - 2

Найдите площадь общей части квадратов KLMN и DPRQ в этом случае.

Задачу решили: 25
всего попыток: 88
Задача опубликована: 09.06.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

При некоторых значениях k на синусоиде y= ksinx можно расположить квадрат, все вершины которого лежат на синусоиде, а его центр совпадает с началом координат. Один из квадратов изображен на рисунке.

Квадраты и синусоида

Сколько таких квадратов существует при k =14?

Задачу решили: 24
всего попыток: 51
Задача опубликована: 18.06.21 08:00
Прислал: avilow img
Источник: Бразильский математический форум
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Натуральные числа от 1 до n расставлены по кругу (без повторов) так, что сумма любых двух соседних чисел равна точному квадрату. При каком наименьшем значении n такая расстановка возможна?

Числовые ожерелья

Для примера, на рисунке приведена расстановка чисел при n=15, в которой сумма любых двух соседних чисел является квадратным числом, кроме лишь одной, выделенной красным отрезком. 

Задачу решили: 27
всего попыток: 58
Задача опубликована: 02.07.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

В квадрате ABCD расположена окружность. Из вершин квадрата к окружности проведены отрезки касательных, на которых построены четыре равносторонних треугольника (см. рис.).

Квартет треугольников

Три из них имеют площади 15, 20, 42. Найдите площадь четвертого треугольника.

Задачу решили: 19
всего попыток: 48
Задача опубликована: 12.07.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Три попарно неравных квадрата площади S1, S2 и S3 имеют общую вершину (и только её), при этом вершины всех квадратов расположены в узлах квадратной решетки 1х1. Ближайшие вершины соседних квадратов соединены отрезками, на которых построены ещё три квадрата, площадь каждого из них равна 10 (смотрите рисунок).

Две тройки квадратов

Найдите наименьшее значение суммы S1+S2+S3 и укажите его в ответе.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.