Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
93
Вычеркните из произведения 1!·2!·3!·...·200! один из факториалов, то есть множитель вида k!, так, чтобы произведение оставшихся было квадратом целого числа. В ответе укажите наименьшее значение k.
Задачу решили:
43
всего попыток:
45
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Найдите сумму чисел в 123-ой строке этой числовой пирамиды.
Задачу решили:
26
всего попыток:
39
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим «многоэтажные ёлочки», каждый этаж которых занимает три строки. Например, на рисунке изображена четырехэтажная елочка. Найдите сумму чисел, находящихся внутри контура 123-этажной ёлочки этой числовой пирамиды.
Задачу решили:
24
всего попыток:
51
Натуральные числа от 1 до n расставлены по кругу (без повторов) так, что сумма любых двух соседних чисел равна точному квадрату. При каком наименьшем значении n такая расстановка возможна? Для примера, на рисунке приведена расстановка чисел при n=15, в которой сумма любых двух соседних чисел является квадратным числом, кроме лишь одной, выделенной красным отрезком.
Задачу решили:
37
всего попыток:
52
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим треугольные рамки, у которых одна вершина совпадает с вершиной пирамиды, две стороны параллельны боковым сторонам пирамиды, третья сторона содержит n-ую строку числовой пирамиды. На рисунке показана 6-ая рамка. Чему равна сумма всех чисел в 123-ей треугольной рамке?
Задачу решили:
20
всего попыток:
25
Натуральное число делится без остатка на 4, на 9, на 49, и имеет 45 делителей, среди которых 1 и само это число. Найдите все такие натуральные числа. В ответе укажите их сумму.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|