Лента событий:
solomon решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
115
всего попыток:
300
Цифры от 0 до 9 (каждую по одному разу и число не может начинаться с нуля) выписывают слева направо в таком порядке, чтобы в любой момент число, образованное выписанными цифрами, было составным. Какое наименьшее число можно получить таким образом?
Задачу решили:
65
всего попыток:
121
Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство: Чему равно K+G для n = 100.
Задачу решили:
75
всего попыток:
113
Найдите количество 11-элементных подмножеств множества {1, 2, ... , 23}, сумма элементов которых равна 194.
Задачу решили:
38
всего попыток:
295
Найдите наименьшее натуральное n, такое что существует функция f:{1,2,...,20} → {1,2,...,n}, удовлетворяющая следующему условию: 2·f(k+1)<f(k)+f(k+2), k=1,2,...,18.
Задачу решили:
33
всего попыток:
52
Найдите количество взаимно-однозначных отображений, для которых выполняется ровно одно из условий .
Задачу решили:
48
всего попыток:
355
На экзамене 16 школьников решали 30 задач. Каждый ученик верно решил не более 15 задач, а каждую задачу решило не менее 8 школьников. При этом для любой пары школьников количество задач, решенных ими обоими, одинаково и равно n. Найдите n.
Задачу решили:
52
всего попыток:
157
Для натурального числа обозначим
Найдите наибольший общий делитель чисел .
Задачу решили:
48
всего попыток:
238
Найдите наибольшее натуральное a, для которого существует такое натуральное b, что ab+2a=b4a.
Задачу решили:
55
всего попыток:
67
Пусть --- все натуральные числа, меньшие и взаимно простые с . Найдите значение суммы дробных частей (Здесь {x} обозначает дробную часть x, {x}=x-[x], где [x] наибольшее целое число, не превосходящее x (целая часть x).)
Задачу решили:
43
всего попыток:
281
Пусть . Найдите такое натуральное , что уравнение имеет ровно 4 различных действительных решения.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|