Лента событий:
solomon решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
93
Положительные действительные числа a и b удовлетворяют условию
Задачу решили:
32
всего попыток:
152
Найдите количество всевозможных пар подмножеств множества A = {1,2, ..., 6}, для которых выполняется следующее условие: объединение этой пары дает множество A, а пересечение содержит не менее двух элементов. Подмножества в паре различны, порядок не учитывается.
Задачу решили:
31
всего попыток:
64
В треугольнике ABC известны длины всех его сторон: |AB| = 21, |BC| = 42, |CA| = 35. Из точек B и C опущены высоты BD и CE, F точка пересечения прямых BD и CE. Прямая, проходящая через центр вписанной окружности треугольника ABC и перпендикулярная BC, пересекает биссектрису угла BFC в точке G. Из G на BF опущена высота GH. Найдите |FH|2.
Задачу решили:
34
всего попыток:
62
Сколькими способами можно провести в выпуклом 7-угольнике A1A2...A7 четыре непересекающихся диагонали так, чтобы 7-угольник разбивался ими на 5 треугольников, каждый из которых имеет с 7-угольником хотя бы одну общую сторону?
Задачу решили:
39
всего попыток:
76
В треугольнике ABC точка O - центр описанной окружности, ∠AOB = ∠BOC = 20°. Точки P, Q, R - середины отрезков OA, OB, OC соответственно. Прямые AB и OC пересекаются в точке D. Пусть OD = 4, а площадь пятиугольника ADRQP равна x. Найдите x2.
Задачу решили:
54
всего попыток:
152
Для натурального числа k обозначим
Задачу решили:
25
всего попыток:
304
При каком наименьшем натуральном n в любом наборе из n действительных чисел больших 10, но меньших 2013 заведомо найдется пара a, b, такая что |(a - b) (ab - 100)| < 10ab?
Задачу решили:
27
всего попыток:
218
Найдите количество упорядоченных наборов целых чисел (a1, a2, ..., a8), удовлетворяющих следующим условиям:
Задачу решили:
43
всего попыток:
72
Для целых чисел a, b, c, n, удовлетворяющих двум следующим условиям, найдите 7a + 13b + 97c.
Задачу решили:
47
всего попыток:
116
Тройка действительных чисел (x, y, z) удовлетворяет условию x2 + y2 + z2 = 1. Пусть максимальное значение, которое принимает выражение (x2 - y2)(y2 - z2)(z2 - x2), равно M. Найдите 1/M2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|