img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 12
всего попыток: 21
Задача опубликована: 29.12.22 00:08
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: solomon

Множество A={a,b,c} содержит 3 элемента. Его запись занимает 7 символов.

Множество B это множество всех подмножеств множества A. Его запись: {{},{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}} занимает 42 символа.

Множество C это множество всех подмножеств множества B. Сколько символов занимает запись множества C?

+ 3
  
Задачу решили: 25
всего попыток: 29
Задача опубликована: 01.01.23 00:08
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите сумму всех годов XXI вв., которые можно представить в виде Л*Я*ЛЯ*ЛЯ, где у каждого сомножителя не больше двух различных делителей.

Задачу решили: 31
всего попыток: 34
Задача опубликована: 16.01.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: aaa_uz

При каком максимальном целом k ряд 1k/7 + 2k/7 + 3k/7 + . . . сходится?

Задачу решили: 21
всего попыток: 41
Задача опубликована: 23.01.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите наибольшее натуральное число, имеющее ровно 5 различных трёхзначных делителей и не имеющее собственных делителей большей значности.

Задачу решили: 14
всего попыток: 20
Задача опубликована: 10.02.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Найдите площадь василька:

Василёк

Контур цветка задаётся в полярных координатах формулой ρ=f(φ), где f(φ) – сумма каких-то трёх членов тригонометрического ряда Фурье (https://ru.wikipedia.org/wiki/Тригонометрический_ряд_Фурье)
с целыми коэффициентами; (каждый косинус и каждый синус это отдельные члены ряда).

Василёк

Площадь василька умножьте на 20000 и введите в ответ целую часть результата.

Задачу решили: 11
всего попыток: 18
Задача опубликована: 01.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите f(2³×3³×5³×7³×11³×13³).

Задачу решили: 8
всего попыток: 13
Задача опубликована: 20.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите шестнадцатое (в порядке возрастания) натуральное число n, для которого f(n)=18.

Задачу решили: 9
всего попыток: 10
Задача опубликована: 22.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.

Задачу решили: 7
всего попыток: 15
Задача опубликована: 05.04.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Определим g(m) как наименьшее натуральное число, которое встречается ровно в m пифагоровых тройках. Например, g(1)=3 и g(2)=5, т.к. числа 1 и 2 не встречаются ни в одной пифагоровой тройке, каждое из чисел 3 и 4 встречается ровно в одной пифагоровой тройке, а число 5 – ровно в двух:
32 + 42 = 52
52 + 122 = 132

Найдите наименьшее натуральное число m, для которого g(m)>12345.

Задачу решили: 10
всего попыток: 21
Задача опубликована: 12.04.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В выпуклом четырёхугольнике Q два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой.

Обозначим: m – длина стороны квадрата, равновеликого четырёхугольнику Q.

Для каждой точки M на периметре Q определим: f(M) – количество таких точек P на периметре Q, что |MP|=m. Например, для точки M, изображённой на рисунке:

Чудо-четырёхугольник - 4

 есть ровно две точки P1 и P2, расстояние которых до M равно m. Следовательно, для этой точки M имеет место f(M)=2.

Для каждого целого числа k определим функцию g(k) таким образом:
– Если есть конечное число точек M на периметре Q, для которых f(M)=k, то g(k) равно этому конечному числу.
– Если есть бесконечно много точек M на периметре Q, для которых f(M)=k, то определяем g(k)=100.

 Найдите сумму k*g(k) по всем k.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.