Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
63
Сколько целых значений может иметь длина биссектрисы AD треугольника ABC, если |AB|=45 и |AC|=29 ?
Задачу решили:
6
всего попыток:
21
Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Задачу решили:
24
всего попыток:
35
Наибольший собственный делитель натурального числа n больше на 2, чем квадрат наименьшего составного делителя n. Найдите сумму всех таких натуральных n.
Задачу решили:
18
всего попыток:
20
Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100? На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.
Задачу решили:
21
всего попыток:
28
В день своего 18-летия Таня нарисовала выпуклый 18-угольник, каждый угол которого кратен 18 градусам.
Задачу решили:
19
всего попыток:
20
Стороны правильного треугольника со стороной n, где n∈N, разделеныточками на единичные отрезки. На сколько частей делят плоскость стороны треугольника и всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?
На рисунке изображены эти прямые для треугольника со стороной n=4. Они (и стороны треугольника) делят плоскость на 43 части.
Задачу решили:
6
всего попыток:
20
Найдите количество частей, на которые разбивается пятимерное вещественное пространство гиперплоскостями x1=0, x2=0, x3=0, x4=0, x5=0,
Задачу решили:
27
всего попыток:
30
Внутри ожерелья из 8-и одинаковых жёлтых правильных 8-угольников заключён зелёный равносторонний 16-угольник, как показано на рисунке. Найдите квадрат отношения площади одного жёлтого 8-угольника к площади зелёного 16-угольника.
Задачу решили:
13
всего попыток:
29
Рассмотрим замкнутую цепочку из m правильных n-угольников, центры которых являются вершинами правильного m-угольника. Каждые два соседних n-угольника имеют одну общую сторону. Другие k стороны каждого n-угольника находятся целиком внутри m-угольника, образуя в совокупности равносторонний m*k-угольник (на изображении примера для n=10, k=2, m=5 он покрашен в красный цвет): Заметим, что не всегда удаётся замкнуть цепочку. Найдите количество троек {n, k, m}, для которых существуют замкнутые цепочки, в пределах 4 < n < 13, k>0.
Задачу решили:
11
всего попыток:
17
4 параллельных прямых расположены на плоскости одна за другой на одинаковых растояниях. 4 других параллельных прямых, не параллельных предыдущим прямым, также расположены на той же плоскости одна за другой на одинаковых растояниях. Наконец, третья группа 4-х параллельных прямых, не параллельных предыдущим, тоже расположены на той же плоскости одна за другой на одинаковых растояниях. Эти 12 прямых делят плоскость на n областей. Найдите сумму всех возможных значений n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|