img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 15
всего попыток: 58
Задача опубликована: 09.09.19 08:00
Прислал: TALMON img
Источник: Вписанные звёзды Н.Авилова (Задача 1878)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке.

Вписанные звезды

Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100?

Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.

Задачу решили: 10
всего попыток: 21
Задача опубликована: 12.04.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В выпуклом четырёхугольнике Q два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой.

Обозначим: m – длина стороны квадрата, равновеликого четырёхугольнику Q.

Для каждой точки M на периметре Q определим: f(M) – количество таких точек P на периметре Q, что |MP|=m. Например, для точки M, изображённой на рисунке:

Чудо-четырёхугольник - 4

 есть ровно две точки P1 и P2, расстояние которых до M равно m. Следовательно, для этой точки M имеет место f(M)=2.

Для каждого целого числа k определим функцию g(k) таким образом:
– Если есть конечное число точек M на периметре Q, для которых f(M)=k, то g(k) равно этому конечному числу.
– Если есть бесконечно много точек M на периметре Q, для которых f(M)=k, то определяем g(k)=100.

 Найдите сумму k*g(k) по всем k.

Задачу решили: 13
всего попыток: 14
Задача опубликована: 17.05.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим вариант построения этой ломаной, когда добавляемая предыдущая часть поворачивается на 90° по и против часовой стрелки попеременно. На рисунке приведена такая кривая после четырёх итераций.

Кривая дракона в прямоугольнике - 2

Эта ломаная помещается в наименьший прямоугольник размером 3х4 и площадью 12. Какова площадь наименьшего прямоугольника, в котором помещается такая кривая после 11 итераций? Рассматриваются прямоугольники, стороны которых параллельны соответствующим звеньям кривой дракона.

Задачу решили: 11
всего попыток: 13
Задача опубликована: 29.05.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°.

Рассмотрим вариант построения этой ломаной, когда добавляемая предыдущая часть поворачивается на 90° по и против часовой стрелки попеременно. На рисунке приведена такая кривая после четырёх итераций.

Клетки кривой дракона – 2

Она образовала 3 замкнутых единичных квадрата. Сколько замкнутых единичных квадратов будет образовано после 11 итераций?

Задачу решили: 11
всего попыток: 14
Задача опубликована: 31.05.23 08:00
Прислал: TALMON img
Источник: Соавтор идеи: Sam777e.
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим такой вариант построения этой ломаной, когда направления поворотов задаются строкой из нулей и единиц: ноль задаёт поворот по часовой стрелке, а единица – поворот против часовой стрелки. На рисунке изображена ломаная, заданная строкой 111010.

Клетки кривой дракона - 3

Эта ломаная образует 15 одноклеточных квадратиков. Рассмотрим ломаные, заданные всевозможными строками из 6-и нулей и единиц. Найдите сумму всех различных количеств квадратиков, которые они образуют.

Задачу решили: 11
всего попыток: 12
Задача опубликована: 02.06.23 08:00
Прислал: TALMON img
Источник: Соавтор идеи: Sam777e
Вес: 1
сложность: 1 img
баллы: 100

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим такой вариант построения этой ломаной, когда направления поворотов задаются строкой из нулей и единиц: ноль задаёт поворот по часовой стрелке, а единица – поворот против часовой стрелки. На рисунке изображена ломаная, заданная строкой 111010.

Кривая дракона в прямоугольнике - 3

Эта ломаная помещается в наименьший прямоугольник размером 9х7 и площадью 63. Рассмотрим ломаные, заданные всевозможными строками из 6-и нулей и единиц. Каждая из них помещается в некоторый наименьший прямоугольник. Найдите сумму всех различных площадей этих прямоугольников.

Задачу решили: 6
всего попыток: 21
Задача опубликована: 13.09.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 2533 и 1680
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?

Задачу решили: 18
всего попыток: 20
Задача опубликована: 18.09.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 1680 и 2533
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?

Треугольник и прямые – 2

На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.

Задачу решили: 19
всего попыток: 20
Задача опубликована: 04.10.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 2533 и 1680
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Стороны правильного треугольника со стороной n, где nN, разделеныточками на единичные отрезки. На сколько частей делят плоскость стороны треугольника и всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?



На рисунке изображены эти прямые для треугольника со стороной n=4. Они (и стороны треугольника) делят плоскость на 43 части.

Задачу решили: 8
всего попыток: 10
Задача опубликована: 01.12.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Рассмотрим всевозможные замкнутые цепочки правильных n-угольников одинакового размера, центры которых лежат на одной окружности (образуя некоторый правильный многоугольник), и каждые два последовательных многоугольника имеют одну общую сторону. Например, при n=8 существуют ДВЕ такие цепочки.

Однако, коллега aaa_uz выдвинул интересную идею о расширении определения таких замкнутых цепочек, используя дополнительные "витки обхода": в случае не замыкания цепочки одним витком обхода, продолжать добавлять новые n-угольники (залезая на старые), пока цепочка не замкнётся: последний n-угольник будет иметь общую сторону с первым.

В случае нескольких витков обхода центры n-угольников образуют самопересекающуюся замкнутую ломаную ("звезду"), совершая определённое количество витков обхода вокруг центра цепочки. При n=8 существует ровно ОДНА такая цепочка. Она использует ТРИ витка обхода. Всего существует ТРИ цепочки 8-угольников в расширенном определении:

Витки обхода

Обозначим f(n) суммарное количество витков обхода всех цепочек n-угольников. Таким образом, f(8) = 1+1+3 = 5. Найдите f(10403).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.