Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
59
Найти наименьшее число, содержащее все цифры от 0 до 9 по паре и делящееся на 2020.
Задачу решили:
25
всего попыток:
76
Выпуклый четырехугольник, у которого три стороны равны между собой образуют два смежных угла в сумме 240º. Отношение сумм противоположных углов составляет 11:19. Найти наименьший угол четырехугольника в градусах.
Задачу решили:
39
всего попыток:
60
Отец,отправляя в первый класс вундеркинда Васю, предварительно подготовил его к знанию чисел до миллиона. Для проверки его логических способностей показал ему первое автобиографическое число со следующим свойством: первая цифра показывает количество нулей в числе, вторая цифра - количество единиц,третья цифра - количество двоек и т.д. Вася вслед за отцом сразу написал следующее такое число, что даже отец поразился его скорости сперва, а потом улыбнулся. Какое число написал Вася?
Задачу решили:
21
всего попыток:
70
На боковой стороне равнобедренного треугольника АВС (АС - основание) с целочисленными сторонами отмечена точка D так, что перпендикуляр DE, опущенный на вторую боковую сторону, делит треугольник на две равновеликие части. Найти наименьший периметр треугольника АВС, если длина ВD - целое число и отношение длины основания к длине боковой стороны меньше единицы.
Задачу решили:
27
всего попыток:
61
На доске написаны числа 2, 3, 4, ..., 2019, 2020. За рубль можно отметить любое число. Если какое-то число уже отмечено, можно бесплатно отмечать его делители и числа, кратные ему. За какое наименьшее число рублей можно отметить все числа на доске?
Задачу решили:
35
всего попыток:
42
В треугольнике с целочисленными сторонами длина биссектриса угла, образованного двумя сторонами 27 и 15, является целым числом. Найти периметр этого треугольника.
Задачу решили:
19
всего попыток:
29
Отношение произведения расстояний от ортоцентра до сторон остроугольного треугольника с целочисленными сторонами разной длины, образующих арифметическую прогрессию, к произведению расстояний от него до вершин является кубом рациональной дроби. Найти наименьший возможный периметр такого треугольника.
Задачу решили:
36
всего попыток:
45
В треугольнике АВС с углами ВАС=30°, АСВ=105° проведена медиана BD. Найти угол ABD в градусах.
Задачу решили:
28
всего попыток:
35
В системе уравнений:
Задачу решили:
26
всего попыток:
94
На сторонах треугольника АВС с углами, образующими арифметическую прогрессию с разностью 10° (угол А-наибольший), отмечены против вершин соответственно точки А1, В1, С1 так, что |ВС1| = |С1А1| = |А1В1| = |В1С|. Найти угол HAC в градусах, если известно, что Н - точка пересечения высот треугольника А1В1С1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|