Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
23
В трапеции с целочисленными основаниями проведены три параллельных целочисленных отрезка: 1) через точку пересечения диагоналей. 2) средняя линия трапеции. 3) отрезок деления данной трапеции на две равновеликие трапеции. Найти наименьшую сумму длин всех пяти отрезков, включая основания данной трапеции.
Задачу решили:
21
всего попыток:
23
В описанной трапеции ABCD (AD и ВС - основания) |АВ|=21, |ВС|=9, |CD|=24. Найти длину хорды вписанной окружности, образованной диагональю АС.
Задачу решили:
22
всего попыток:
32
Вписанная в трапецию окружность разделила среднюю линию на три отрезка 3, 24, 8. Найти длину большого основания.
Задачу решили:
22
всего попыток:
24
Точка вне квадрата находится на расстояниях от концов одной из диагоналей в отношении между собой 1:4. Угол между отрезками этих расстояний прямой. Найти отношение расстояний от этой точки до концов другой диагонали (меньшего к большему).
Задачу решили:
26
всего попыток:
30
В выражении разные буквы соответствуют разным цифрам, найдите его значение. (С+Н+Е+Г+У+Р+О+Ч+К+А)*(С+Н+Е+Г+У+Р+О+Ч+К+А) - (СНЕГ)/(СНЕГ)=?
Задачу решили:
19
всего попыток:
25
Найти квадрат отношения радиусов, описанных около двух четырехугольников со сторонами 2, 3, 4, 5 и 3, 4, 5, 6.
Задачу решили:
22
всего попыток:
37
a/b + b/c + c/a=3,
Задачу решили:
22
всего попыток:
24
Золотой треугольник и прямоугольный с острым углом 36° имеют равные по длине боковые стороны первого и гипотенузы второго треугольника. Чему равен катет, противолежащий углу 54°, если сумма длин основания и боковой стороны золотого треугольника равна 36.
Задачу решили:
21
всего попыток:
52
Радиус вписанной окружности в треугольник со сторонами 6 м и 10 м равен 2 м. Найти наибольшее значение третьей стороны в мм, округлив его до ближайшего целого.
Задачу решили:
18
всего попыток:
24
Два прямоугольных треугольника, в каждом из которых проведены высоты с прямого угла и по одной биссектрисе с острого угла. В одном тругольнике точка пересечения высоты и биссектрисы делит высоту на отрезки 15 и 9, считая от вершины прямого угла. В другом треугольнике делит биссектрису на отрезки 9 и 6, считая от вершины, с которой проведена биссектриса. Найти отношение площадей треугольников (меньшей к большей).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|