Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2197
всего попыток:
4658
– Привет! – Привет! – Как дела? – Хорошо. Растут два сына. – А сколько им лет? – Сумма их возрастов равна квадрату количества голубей возле этой скамейки. – Этой информации мне недостаточно... – Старший похож на мать. – Вот теперь я знаю ответ на свой вопрос. Сколько лет сыновьям? (В ответе указать произведение их возрастов.)
Задачу решили:
56
всего попыток:
130
Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 2°. Найдите сумму абсцисс точек пересечения этих прямых с прямой y = 100 − 2x. Ответ округлите до ближайшего целого.
Задачу решили:
106
всего попыток:
151
Положительные числа a, b удовлетворяют равенству ab(a + b + 1) = 25. Найдите наименьшее значение, которое может принимать выражение (a + b)(b + 1).
Задачу решили:
93
всего попыток:
144
В стране лжецов и рыцарей (рыцари всегда говорят правду, лжецы всегда лгут) десяти людям выдали различные числа от 1 до 10. Потом каждого спросили: «Делится ли ваше число на 2?». Утвердительный ответ дали 3 человека. На вопрос «Делится ли ваше число на 4?» утвердительный ответ дали 6 человек. На вопрос «Делится ли ваше число на 5?» утвердительно ответили 2 человека. Найти произведение чисел, которое получили лжецы.
Задачу решили:
71
всего попыток:
115
Найти максимальное значенияе n < 2013 при котором все коэффициенты в разложении бинома Ньютона (a + b)n нечетны?
Задачу решили:
117
всего попыток:
160
Чему равен остаток от деления 3104 на 103?
Задачу решили:
85
всего попыток:
96
Известно, что при некотором a многочлен P(x) = xn-axn−2 для всех n > 2 делится на x-2. Чему равно максимальное значение a?
Задачу решили:
100
всего попыток:
463
В подвале имеется некоторое количество лампочек, выключатели для которых находятся снаружи так, что узнать какой выключатель соответствует какой лампочке можно только спустившись в подвал. Для того, чтобы установить соответствие для всех лампочек хозяину потребовалось спуститься 2 раза. Какое максимальное количество лампочек могло быть в подвале?
Задачу решили:
77
всего попыток:
176
Из колоды карт убрали одну масть, так что осталось в ней 27 карт. Первый игрок загадывает карту, а второй раскладывает по одной карте в три стопки: первую карту в первую стопку, вторую - во вторую, третью - в третью, затем четвертую в первую, пятую во вторую и т.д. После того как все карты будут разложены, первый говорит в какой стопке находится задуманная карта. Далее второй складывает стопки вместе, так чтобы стопка с картой оказалась посредине. После этого снова повторяется процедура с раскладыванием два раза и в конце первый также указывает стопку, где находится задуманная карта. На каком месте от начала стопки (сверху) окажется задуманная карта?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|