img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 108
всего попыток: 152
Задача опубликована: 16.12.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

В треугольнике ABC BC = a, CA = b, AB = c. Найдите градусную меру угла B, если a = c и a2 = b2 + ba.

Задачу решили: 78
всего попыток: 91
Задача опубликована: 17.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vsevolod_mashi... (Всеволод Машинсон)

Для натуральных чисел a, b и c верны следующие равенства

a3-b3-c3=3abc,

a2=2(b+c).

Чему равно a+b+c?

Задачу решили: 59
всего попыток: 311
Задача опубликована: 16.05.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Сколько существует пар положительных целых чисел, удовлетворяющих уравнению x2+10!=y2?

Задачу решили: 25
всего попыток: 329
Задача опубликована: 03.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?

Задачу решили: 34
всего попыток: 132
Задача опубликована: 15.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Найдите количество пар действительных чисел (a, b) таких, что если c является корнем уравнения x2+ax+b=0, то и c2-2 также является корнем.

Задачу решили: 51
всего попыток: 81
Задача опубликована: 10.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно:

a+b+c+d=0
abcd=1
a3+b3+c3+d3=1983.

Найти 1/a+1/b+1/c+1/d. 

Задачу решили: 69
всего попыток: 99
Задача опубликована: 17.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Пусть a+b+c=1 и a, b, c >0. Найдите минимум a2+2b2+c2.

Задачу решили: 40
всего попыток: 50
Задача опубликована: 22.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Пусть действительные числа a ≥ b ≥ c > 0 и x ≥ y ≥ z > 0. Найти минимум (ax)2/((by+cz)(bz+cy)) + (by)2/((cz+ax)(cx+az)) + (cz)2/((ax+by)(ay+bx)).

Задачу решили: 51
всего попыток: 77
Задача опубликована: 31.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish (Андрей Вишневый)

Известно, что уравнение x3-ax2+bx-8=0 имеет все корни действительные, a и b - положительные числа. Найдите миимально возможное значение b.

Задачу решили: 30
всего попыток: 57
Задача опубликована: 20.03.15 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

14 монет пронумерованы с 1 до 14. Первому игроку известно, что монеты с номерами 1,2,...,7 настоящие, а монеты с номерами 8,9,..,14 фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,7 - настоящие, а 8,9,..,14 фальшивые?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.