Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
57
14 монет пронумерованы с 1 до 14. Первому игроку известно, что монеты с номерами 1,2,...,7 настоящие, а монеты с номерами 8,9,..,14 фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,7 - настоящие, а 8,9,..,14 фальшивые?
Задачу решили:
45
всего попыток:
58
Найти количесто пар натуральных чисел таких n и m (n>=m), что nm=n+m+НОД(n,m), где НОД(n,m) - наибольший общий делитель чисел n и m.
Задачу решили:
60
всего попыток:
65
Найти сумму всех натуральных чисел n таких, что произведение его цифр равно n2-10n-22.
Задачу решили:
21
всего попыток:
32
Пусть a и b - натуральные числа, рассмотрим все 6 возможных попарных произведений чисел a, b, a+2 и b+2. Какое максимальное количество из этих произведений могут быть полными квадратами.
Задачу решили:
69
всего попыток:
82
Найти минимум функции f(x)=x3(x3+1)(x3+2)(x3+3).
Задачу решили:
27
всего попыток:
54
Пусть функция f(x) определена на множестве рациональных чисел и f(m/n)=1/n для взаимно-простых m и n. Найти произведение всех x таких, что f((x-f(x))/(1-f(x)))=f(x)+9/52.
Задачу решили:
30
всего попыток:
179
Известно, что cos(720°/7) является одним из корней уравнения ax6-bx4+cx2-x-1=0, где a, b, c - натуральные числа. Найдите a+b+c.
Задачу решили:
36
всего попыток:
63
Пусть a, b, c, d, e - действительные числа такие, что: c+a=15 ac+b+d=85 ad+bc+e=225 ae+bd=274 be=120 Найдите сумму всех возможных значений e.
Задачу решили:
58
всего попыток:
63
Внутри прямоугольника ABCD расположена точка P так, что |PB|=2, |PC|=3, |PD|=5. Найти |PA|2.
Задачу решили:
63
всего попыток:
75
Известно, что a/(a2+1)=1/3. Найдите a3/(a6+a5+a4+a3+a2+a+1).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|