img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 38
всего попыток: 403
Задача опубликована: 04.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Два десятичных числа сложили в "столбик"

  ABC
+ DEF
------
  IJK

Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?

Задачу решили: 60
всего попыток: 74
Задача опубликована: 21.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Kf_GoldFish

Как-то Кролик торопился на встречу с осликом Иа-Иа, но к нему неожиданно пришли Винни-Пух и Пятачок. Будучи хорошо воспитанным, Кролик предложил гостям подкрепиться. Пух завязал салфеткой рот Пятачку и в одиночку съел 10 горшков меда и 22 банки сгущенного молока, причем горшок меда он съедал за 2 минуты, а банку молока — за минуту. Узнав, что больше ничего сладкого в доме нет, Пух попрощался и увел Пятачка. Кролик с огорчением подумал, что он бы не опоздал на встречу с осликом, если бы Пух поделился с Пятачком. Зная, что Пятачок съедает горшок меда за 5 минут, а банку молока за 3 минуты, Кролик вычислил наименьшее время, за которое гости смогли бы уничтожить его запасы.

Чему равно это время? (Банку молока и горшок меда можно делить на любые части).

Задачу решили: 41
всего попыток: 57
Задача опубликована: 04.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

В колоде 2016 карт. Часть из них лежит рубашками вверх, остальные - рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. 

За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?

Задачу решили: 52
всего попыток: 58
Задача опубликована: 13.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найти сумму всех x1, x2, …, x100 > 0 таких, что:
x1+1/x2=4
x2+1/x3=1
x3+1/x4=4

X99+1/x100=4
x100+1/x1=1

Задачу решили: 33
всего попыток: 59
Задача опубликована: 24.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Имеется квадрат клетчатой бумаги размером 102×102 клеток и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? (Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.)

+ 4
  
Задачу решили: 40
всего попыток: 91
Задача опубликована: 29.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zhekas (Евгений Сыромолотов)

Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ "да" надо заплатить 2 рубля, за ответ "нет" — 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?

+ 7
  
Задачу решили: 70
всего попыток: 72
Задача опубликована: 18.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

К натуральному числу N приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до N. Найдите N.

Задачу решили: 34
всего попыток: 47
Задача опубликована: 15.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

При каком наименьшем n шахматную доску n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

+ 2
  
Задачу решили: 33
всего попыток: 55
Задача опубликована: 22.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?

Задачу решили: 34
всего попыток: 60
Задача опубликована: 09.05.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.