Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
25
Вовочка называет ненулевую цифру, а Маша вставляет ее вместо одной из звёздочек в выражение **** - **** (разность двух четырехзначных чисел). Вовочка может одну цифру назвать только один раз. Цель Вовочки - получить после восьми ходов максимальное значение выражения, а цель Маши - минимальное. Каким будет значение выражения при идеальной игре обоих?
Задачу решили:
21
всего попыток:
64
У кладовщика есть 120 кг сахара, двухчашечные весы и гиря на 8 кг. За какое минимальное количество взвешиваний можно отвесить 35 кг сахара?
Задачу решили:
23
всего попыток:
30
Внутри треугольника ABC размещена точка D так, что величины углов DAC, DAB, DBA равны, соответственно, 24, 30 и 18 градусов, |CD| = |CB|. Найдите величину угла CDB в градусах.
Задачу решили:
34
всего попыток:
70
Сколько всего четырёхугольников (включая невыпуклые) составляют линии в треугольнике?
Задачу решили:
45
всего попыток:
170
Площадь и периметр треугольника одно и то же минимальное целое число. Найдите это число.
Задачу решили:
27
всего попыток:
53
Трехчлены x2+ax+b и x2+ax-b, где a и b - натуральные числа и НОД(a,b)=1, приводимы в целых числах (т. е. могут быть представлены в виде произведения двучленов с целыми коэффициентами). Найти минимальное значение b, для которого существуют два различных значения a.
Задачу решили:
18
всего попыток:
22
Внутри равностороннего треугольника ABC случайным образом выбрана точка D. Из отрезков AD, BD и CD составлен треугольник. Определите его углы, если известно, что угол ADB = α, угол CDA = β.
Задачу решили:
22
всего попыток:
31
Пусть x1, x2, x3, x4, x5 - натуральные числа, которые удовлетворяют соотношениям: Скольким сушествует таких различных наборов (x1, x2, x3, x4, x5)?
Задачу решили:
15
всего попыток:
20
Для произвольного треугольника ABC есть внутренняя точка K, являющаяся общей вершиной трех равных квадратов, по две остальные вершины которых лежат на сторонах треугольника. Если описать окружность с центром в этой точке и радиусом, равным стороне квадрата, - она пересечёт стороны треугольника как раз в этих шести вершинах. Найдите квадрат радиуса этой окружности для треугольника со сторонами (7,15,20).
Задачу решили:
29
всего попыток:
31
Пусть p и q − положительные целые числа такие, что оба уравнения x2-px + q= 0 и x2-qx + p = 0 имеют различные целые корни. Найдите значение p+q.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|