Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
46
всего попыток:
66
В прямоугольник ABCD (|AB|=36, |BC|=60) вписан прямоугольник KLMN (точки K и L расположены соответственно на сторонах AB и BC), при это |BL|<|LC|. Найти максимально возможное значение |BL|.
Задачу решили:
59
всего попыток:
74
Найти сумму всех k таких, что уравнение x4+(1-2k)x2+k2-1=0 имеет ровно 3 действительных корня.
Задачу решили:
54
всего попыток:
56
Решите уравнение 8/{x}=9/x+10/[x], где {x} - мантисса числа x, а [x] - его антье.
Задачу решили:
46
всего попыток:
63
Для целых положительных чисел n определена функция f(n)=n2+n+1. Найдите наибольшее n такое, что 2015*f(12)*f(22)*...*f(n2)≥(f(1)*f(2)*...f(n))2.
Задачу решили:
40
всего попыток:
262
Стрелочные часы с тремя стрелками - часовой, минутной и секундной имеют плавный ход, то есть стрелки движутся плавно, без скачков по делениям. Определите, сколько существует моментов времени (чч:мм:сс:мкс и т.д.) углы между часовой и минутной, минутной и секундной и секундной и часовой составляют ровно 120 градусов.
Задачу решили:
53
всего попыток:
70
Найти сумму всех натуральных n таких, что [n2/3] является простым. [x] - целая часть числа x.
Задачу решили:
39
всего попыток:
88
Найти сумму всех Fn/2015n для всех натуральных n. F0=0, F1=1, Fn=Fn-1+Fn-2.
Задачу решили:
68
всего попыток:
82
[n*lg2]+[n*lg5]=2010. Найти n. ([x] - целая часть числа x.)
Задачу решили:
51
всего попыток:
64
Найдите [102017/S], где S=1+11+111+...+11...1 (2014 единиц). [x] - целая часть числа x.
Задачу решили:
71
всего попыток:
91
Найти сумму всех натуральных n таких, что 2n является делителем 3n-1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|