img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 45
всего попыток: 63
Задача опубликована: 20.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg2013

Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5. Найдите число отличных билетов.

Задачу решили: 65
всего попыток: 75
Задача опубликована: 22.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: snape

Все 5 представленных на рисунке прямоугольников, включая объединяющий, подобны.

Прямоугольники

Найти отношения площадей А и В.

+ 4
  
Задачу решили: 42
всего попыток: 54
Задача опубликована: 25.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите сумму всех таких значений α, не превосходящих 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.

Задачу решили: 52
всего попыток: 57
Задача опубликована: 27.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100

На доске были написаны несколько различных натуральных чисел. Сумму этих чисел поделили на их произведение, а после этого стерли самое маленькое число и поделили сумму оставшихся чисел на их произведение. Второй результат оказался в 3 раза больше первого. Какое число стерли?

Задачу решили: 37
всего попыток: 72
Задача опубликована: 29.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Пусть a, b и c — попарно взаимно простые натуральные числа. Найдите сумму всех возможных значений (a + b)(b + c)(c + a)/abc , если известно, что это число целое.

+ 1
  
Задачу решили: 34
всего попыток: 38
Задача опубликована: 01.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Дан набор, состоящий из 2015 чисел таких, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.  Найдите произведение чисел в наборе.

Задачу решили: 38
всего попыток: 41
Задача опубликована: 03.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем медианой системы 2n точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2016 точек, никакие три из которых не лежат на одной прямой?

Задачу решили: 53
всего попыток: 116
Задача опубликована: 05.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Дана функция f(x) = |4 − 4|x||− 2. Сколько решений имеет уравнение f(f(x)) = x?

Задачу решили: 55
всего попыток: 57
Задача опубликована: 08.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: georgp

На сторонах AB и BC равностороннего треугольника ABC взяты точки D и K, а на стороне AC — точки E и M так, что DA+AE = KC+CM = AB. Найдите угол между прямыми DM и KE (в градусах).

+ 3
  
Задачу решили: 44
всего попыток: 45
Задача опубликована: 10.02.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Найдите все такие пары простых чисел p и q, что p3−q5 = (p+q)2. В ответе укажите сумму произведений пар таких чисел.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.