Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
45
всего попыток:
74
Найдите сумму всех произведений xy целых решений уравнения x3-y3=91.
Задачу решили:
35
всего попыток:
73
Полукруг разбит линиями на три части одинаковой площади. Найдите угол α в градусах. Ответ округлите до ближайшего целого.
Задачу решили:
38
всего попыток:
60
В равнобедренном треугольнике ABC (|AB|=|BC|=10) перпендикуляр из вершины C к стороне AB пересекает её в точке D, |AD|=6. Перпендикуляр из точки D к стороне AC пересекает её в точке E. Найти |BE|. Ответ укажите округлив до второго знака после запятой.
Задачу решили:
22
всего попыток:
81
Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.
Задачу решили:
18
всего попыток:
22
Внутри равностороннего треугольника ABC случайным образом выбрана точка D. Из отрезков AD, BD и CD составлен треугольник. Определите его углы, если известно, что угол ADB = α, угол CDA = β.
Задачу решили:
36
всего попыток:
47
Найдите минимальную длину отрезка, который содержит все решения неравенства:
Задачу решили:
32
всего попыток:
35
Найдите многочлен наименьшей степени с целыми коэффициентами и коэффициенте 1 при старшей степени, корнем которого явлется число 21/2+31/2. В качестве ответа введите сумму его коэффициентов.
Задачу решили:
50
всего попыток:
61
Сколько существует различных треугольников, у которых одна из сторон равна 1, а два угла равны 40° и 70°?
Задачу решили:
29
всего попыток:
32
В треугольник со сторонами 5, 6 и 9 вписан круг и построены к нему касательные, параллельные сторонам треугольника. Эти касательные отсекают три новых треугольника, в каждый из которых также вписаны круги. Вычислите сумму площадей всех четырех кругов. Эта сумма представляется в виде π*p/q, где p и q - целые числа. В качестве ответа введите p/q.
Задачу решили:
29
всего попыток:
36
Учитель дал детям три задачи: A, B, C. 25 школьников решили хотя бы одну задачу. Среди школьников, не решивших задачу A, но решивших B, в два раза больше, чем решивших C. Школьников, решивших только задачу A, на одного больше, чем остальных школьников, решивших задачу A. Сколько школьников решили только задачу B, если среди школьников, решивших только одну задачу, половина не решила задачу A?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|