Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
49
Равнобедренный треугольник одним разрезом поделили на два равнобедренных треугольника. Какое максимальное количество разных по величине углов может получиться?
Задачу решили:
39
всего попыток:
71
В параллелограмме площадью 2009 проведены две параллельные сторонам линии, которые пересекаются на диагонали. Известно, что площади параллелограммов 1, 2 и 3 являются различными целыми числами и составляют геометрическую прогрессию. Определите максимальную площадь параллелограмма 1.
Задачу решили:
28
всего попыток:
57
Стороны треугольника со длинами сторон 3, 4 и 5 являются диаметрами трех окружностей. Еще одна окружность описывает эти три окружности. Определите ее диаметр.
Задачу решили:
25
всего попыток:
54
Грузовик заполняют ящиками с овощами. Всего в него помещается ровно 2018 ящиков. При загрузке соблюдают следующие ограничения: Сколько существует способов наполнения грузовика?
Задачу решили:
32
всего попыток:
39
Переложите одну спичку, чтобы равенство стало верным.
Задачу решили:
34
всего попыток:
70
Сколько всего четырёхугольников (включая невыпуклые) составляют линии в треугольнике?
Задачу решили:
46
всего попыток:
72
Марья Ивановна написала число на доске и попросила учеников назвать его делители. Первый ученик сказал, что число делится на 2. Марья Ивановна сказала, что почти все правы, кроме двух соседей по парте - Вовочки и его приятеля, которые произнесли свои фразу последовательно, первым сказал Вовочка. Каким по порядку произнес свою фразу Вовочка?
Задачу решили:
47
всего попыток:
55
В круг вписан треугольник с длинами сторон 3, 4 и 5. Найдите площадь голубой части.
Задачу решили:
58
всего попыток:
69
В квадрате ABCD на сторонах выбраны точки E, F, G, H так, что |EA|=|FB|=|GC|=|HD|. Квадрат разделен на части как указано на рисунке. Известны площади трёх частей, найдите площадь четвертой.
Задачу решили:
50
всего попыток:
54
Найдите максимальную сумму натуральных чисел a, b, c и d таких, что a!+b!+c!=d!.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|