Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
26
Какое количество сторон у вписанного в окружность многоугольника с наибольшей суммой квадратов сторон?
Задачу решили:
34
всего попыток:
44
Найти количество натуральных чисел в диапазоне от 3 до 2020 , которые не могут быть представлены в виде суммы последовательных натуральных чисел.
Задачу решили:
27
всего попыток:
28
На шахматной доске 8×8 проведена прямая линия. Какое максимальное число клеток она может пересекать?
Задачу решили:
34
всего попыток:
57
Натуральные числа m и n взаимно просты. Найдите наибольший общий делитель чисел m+2000n и n+2000m?
Задачу решили:
42
всего попыток:
53
Трехзначное число делится на 11 без остатка. При этом частное равно сумме квадратов цифр делимого. Найдите сумму всех таких трехзначных чисел.
Задачу решили:
37
всего попыток:
44
Натуральное число в десятичной записи заканчивается на цифру 6. Когда эту цифру перенесли в начало, то исходное число увеличилось в 4 раза. Найти сумму двух наименьших таких чисел.
Задачу решили:
48
всего попыток:
50
Найдите значение выражения
Задачу решили:
31
всего попыток:
34
Классный руководитель отправил своих учеников Антона, Бориса, Вадима, Григория и Дмитрия на олимпиаду по математике и предположил, что Антон займет первое место, Борис - второе, Вадим - третье, Григорий - четвертое и Дмитрий - пятое. Оказалось, что он не угадал ни одного правильного места, и ни одной пары следующей непосредственно друг за другом учеников. Учитель математики предположил, что последовательность будет такой: Григорий, Антон, Дмитрий, Вадим, Борис и угадал места двоих учеников и две пары непосредственно следующих друг за другом учеников. Установите верный порядок. В ответе укажите последовательность цифр 1 (соответствует Антону), 2 (соответствует Борису) и т.д. в порядке от первого места до последнего. Например, если бы учитель математики был прав, то ответом было бы число - 41532.
Задачу решили:
38
всего попыток:
49
Найдите наибольшее p при котором уравнение
Задачу решили:
45
всего попыток:
74
Найдите сумму всех произведений xy целых решений уравнения x3-y3=91.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|