Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
46
всего попыток:
60
Круг разбили ста хордами так, что никакие три хорды не пересекаются в одной точке, при этом при этом всего было сто точек пересечений хорд. На какое наибольшее число областей разобьется круг?
Задачу решили:
95
всего попыток:
143
Два парома отправляются одновременно с разных берегов реки и встречаются в 140 метрах от берега, достигают противоположных берегов и сразу отправляются обратно. Второй раз они встречаются в 80 метрах от противоположного берега. Определите ширину реки.
Задачу решили:
76
всего попыток:
92
На окружности с центром в точке O и радиусом 1 отмечены точки A и B. Хорда AB является диаметром второй окружности, при этом на этой окружности имеется точка C такая, что расстояние OC является максимальным. Найдите квадрат длины хорды AB.
Задачу решили:
51
всего попыток:
123
В трехмерном кубе 8х8х8 играют в крестики-нолики. Сколько существует прямых, на которых могут лежать 8 крестиков в ряд?
Задачу решили:
103
всего попыток:
129
Определите 3 последние цифры числа 79999.
Задачу решили:
71
всего попыток:
95
Сумма цифр числа 44444444 равна M, сумма цифр числа M равна N. Чему равна сумма цифр числа N?
Задачу решили:
78
всего попыток:
91
Для натуральных чисел a, b и c верны следующие равенства a3-b3-c3=3abc, a2=2(b+c). Чему равно a+b+c?
Задачу решили:
141
всего попыток:
206
Сколько всего страниц в книге, если для их нумерации потребовались 2382 цифры?
Задачу решили:
135
всего попыток:
216
Произведение 1000 натуральных чисел равно 1000. Чему равна минимально возможная их сумма.
Задачу решили:
59
всего попыток:
311
Сколько существует пар положительных целых чисел, удовлетворяющих уравнению x2+10!=y2?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|