img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 48
всего попыток: 135
Задача опубликована: 21.09.11 08:00
Прислал: zmerch img
Источник: Задачи 550, 573
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Каждую грань параллелепипеда 3х5х7 разбили на единичные квадратики, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.

Задачу решили: 66
всего попыток: 135
Задача опубликована: 26.03.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Решите систему уравнений:
y=2x+x2y,
x+y3=3xy2+3y.

В ответе укажите максимальное значение 10(x+y), округленное до ближайшего целого.

Задачу решили: 36
всего попыток: 142
Задача опубликована: 05.05.12 08:00
Прислал: zmerch img
Источник: ВЗМШ
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Проведём сечение трёхмерного куба, перпендикулярное диагонали куба и проходящее через её середину. В результате получится правильный шестиугольник. А теперь рассмотрим четырёхмерный куб. Какое тело получится в сечении, перпендикулярном диагонали четырёхмерного куба и проходящем через её середину? В ответе укажите сумму количеств вершин и граней.

Задачу решили: 31
всего попыток: 48
Задача опубликована: 18.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ChLD (Анатолий Лакеev)

Коэффициенты an приведённого многочлена P(x)=x2012+a1x2011+...+a2012 удовлетворяют условию

||an|-1|<1/2012  при   n=1,...,2012. 

Найдите максимальное количество отрицательных коэффициентов многочлена P(x) при условии, что действительных корней у него нет.

Задачу решили: 15
всего попыток: 727
Задача опубликована: 30.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Площадь выпуклого пятиугольника ABCDE равна 180. На его сторонах AB, BC, CD, DE и EA выбраны точки K, L, M, N и O так, что |AK|/|KB|=|BL|/|LC|=|CM|/|MD|=|DN|/|NE|=|EO|/|OA|=2. Найдите минимальное и максимальное целочисленные значения площади пятиугольника KLMNO. В ответе укажите их произведение.

Задачу решили: 44
всего попыток: 86
Задача опубликована: 26.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Для функции f(x) при x>1 выполняется равенство: 
f(x2-1)+2f((2x-1)/(x-1)2)=2-4/x+3/x2. Найдите максимальное значение 100f(3/2).

Задачу решили: 40
всего попыток: 79
Задача опубликована: 31.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите количество подмножеств множества натуральных чисел {1,2,...,37} с суммой элементов, делящейся на 74.

Задачу решили: 31
всего попыток: 156
Задача опубликована: 27.02.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Сколько существует приведённых многочленов от одной переменной сотой степени с целыми коэффициентами, имеющих на интервале (0,3) сто корней с учётом кратности?

Задачу решили: 25
всего попыток: 291
Задача опубликована: 19.08.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Есть отрезок длины 100. Петя выбирает натуральное число n. Вася и Петя по очереди (первым делает ход Вася) выбирают любой из имеющихся отрезков и делят его на два отрезка произвольной длины. После своего n-го хода Петя из полученных отрезков пробует составить выпуклый многоугольник максимальной целочисленной площади. При каком минимальном n Пете удастся это сделать независимо от игры Васи.

Задачу решили: 29
всего попыток: 133
Задача опубликована: 05.02.14 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Sam777e

Определите количество пар натуральных чисел x и y, для которых последовательность

zn=(xn+yn)/20n  не является возрастающей

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.