Закрыть
Задачу "[[name]]" решило [[solved]] человек(а).
Вы решили задачу
и добавили [[value]] баллов к своей силе.
но задача по силе не входит в топ 100 решенных вами задач.
Вы не решили задачу.
За решение задачи можете добавить [[future]] баллов к силе.
[[formula]]
Сила пересчитывается один раз в сутки.
Сила задачи высчитывается по формуле:
F=(B-D)/(1+[S/10]),
-
B - количество баллов за задачу, по умолчанию 100
-
D - штраф за попытку, по умолчанию 5
-
S - количество решивших данную задачу
Сила конкретного пользователя считается по
100 решенным задачам с максимальным значением силы.
|
Задачи: Математика
|
|
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
2
Задачу решили:
26
всего попыток:
32
Задача опубликована:
11.02.15 08:00
Источник:
Международная Жаутыковская олимпиада
Вес:
1
сложность:
3
баллы: 100
|
Определите максимальное целое число n такое, что для каждого натурального k, k≤n/2, имеются два положительных делителя n с разницей k.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.