img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik добавил комментарий к задаче "Целочисленные точки на эллипсах - 3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 17
всего попыток: 28
Задача опубликована: 06.10.23 08:00
Прислал: Kf_GoldFish img
Источник: По мотивам задачи 2400
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg

Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32.

Треугольники в треугольнике

Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.