img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 4
+ЗАДАЧА 763. Граф (Д. Карпов)
  
Задачу решили: 11
всего попыток: 72
Задача опубликована: 13.07.12 08:00
Прислал: nauru img
Источник: Олимпиада по математике г.Санкт-Петербурга
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: ChLD (Анатолий Лакеev)

В графе 301 вершина. В любом множестве А, содержащем не менее трех вершин этого графа, можно указать три вершины, каждая из которых смежна не более чем с 200 вершинами из А. Какое максимальное количество ребер может быть в этом графе? 

Задачу решили: 56
всего попыток: 277
Задача опубликована: 05.12.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Десять школьников стоят в ряд. Каждую минуту какие-то два соседних школьника меняются местами. Через некоторое время выяснилось, что каждый из школьников успел побывать на первом и последнем месте. Найдите минимальное число минут которое могло пройти.

Задачу решили: 36
всего попыток: 266
Задача опубликована: 28.01.13 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В стране 1000 городов, некоторые пары городов соединены дорогами. Оказалось, что один из концов любой дороги является городом, из которого выходит не более 10 дорог. Какое наибольшее количество дорог может быть в этой стране?

Задачу решили: 32
всего попыток: 250
Задача опубликована: 20.02.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?

Задачу решили: 40
всего попыток: 81
Задача опубликована: 11.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2007
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Вершины графа G можно единственным образом разбить на 5 групп так, что никакие две вершины из одной группы не смежны. Количество вершин в графе - 2012. Найдите минимальное число ребер в этом графе.

Задачу решили: 43
всего попыток: 84
Задача опубликована: 18.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В одной кучке лежит n камней, а в другой – k камней. Каждую минуту автомат выбирает кучку, в которой четное число камней, и половину имеющихся в ней камней перекладывает в другую кучку (если в обеих кучках четное число камней, то автомат выбирает кучку случайным образом). Если в обеих кучках число камней оказалось нечетным, автомат прекращает работу. Сколько существует упорядоченных пар натуральных чисел (n, k), не превосходящих 1000, для которых автомат через конечное время обязательно остановится?

Задачу решили: 32
всего попыток: 71
Задача опубликована: 22.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Дана белая клетчатая доска 10?10. Игрок хочет провести в каждой клетке диагональ и закрасить один из получающихся треугольников в черный цвет так, чтобы к любой границе двух клеток примыкали два одноцветных треугольника. Сколькими различным способами игрок может это сделать?

Задачу решили: 40
всего попыток: 71
Задача опубликована: 03.04.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Найдите наибольшее натуральное k, удовлетворяющее следующему условию: если в 2013 мешках разложены гири, вес каждой гири – степень двойки и суммарный вес гирь в каждом мешке один и тот же, то найдутся k гирь одного веса.

Задачу решили: 71
всего попыток: 114
Задача опубликована: 17.04.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Несколько (больше одного) человек, каждый из которых вначале имеет 300 долларов, играют в казино. Один раунд игры заключается в следующем. Все игроки отдают по 10 долларов крупье, затем один из них по жребию объявляется проигравшим. Он раздаёт все свои деньги поровну всем остальным и выходит из игры. В итоге оказалось, что у последнего оставшегося игрока капитал вновь составляет 300 долларов. Сколько человек пришло в казино?

Задачу решили: 39
всего попыток: 52
Задача опубликована: 12.06.13 12:04
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Сколько существует  1 <= n <= 2013 таких, что существует перестановка a1, a2, ..., an чисел 1, 2, ..., n в которой ни для каких индексов i < j < k не выполняется равенство ak=(ai+aj)/2? 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.