Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
72
Найти сумму всех натуральных чисел, оканчивающиеся на 2006, которые после зачеркивания последних четырех цифр уменьшаются в целое число раз.
Задачу решили:
26
всего попыток:
46
Правильный шестиугольник со стороной 6, разбит на единичные треугольники, и отмечены вершины всех единичных треугольников. Найти число всех правильных шестиугольников, которые можно построить на заданных точках. Три из них изображены на рисунке.
Задачу решили:
50
всего попыток:
65
Ковер Серпинского представляет собой бесконечное разбиение квадрата на меньшие квадраты. Построение выполняется поэтапно: на первом шаге исходный квадрат разбивается на девять равных квадратов и центральный квадрат закрашивается; на втором этапе каждый из оставшихся незакрашенных квадратов разбивается на девять меньших квадратов и центральный квадрат закрашивается, и так до бесконечности. На рисунке показаны разбиения квадрата, которые получаются после первых трех шагов. Сколько закрашенных и незакрашенных квадратов вместе получается на пятом шаге построения ковра Серпинского?
Задачу решили:
47
всего попыток:
90
На сторонах прямоугольного треугольника вне его построены три квадрата. Стороны квадрата ABCD параллельны катетам треугольника и делят площадь каждого из трёх квадратов на две равные части. Найдите сторону квадрата ABCD, если катеты данного треугольника равны 18 и 126.
Задачу решили:
52
всего попыток:
72
От центра окружности на расстоянии 5 проведена хорда. В оба получившихся сегмента вписаны квадраты, так что у обоих одна сторона лежит на хорде, а еще две точки на окружности. Найти разность длины сторон большего и меньшего квадрата.
Задачу решили:
59
всего попыток:
76
Саша выписала числа от 1 до 100, а Миша часть из них стер. Среди оставшихся у 20 чисел есть в записи единица, у 19 чисел есть в записи двойка, а у 30 чисел нет ни единицы, ни двойки. Сколько чисел стер Миша?
Задачу решили:
42
всего попыток:
68
Имеется 11 монет с различными целыми весами. Сумарный вес любых семи монет больше суммарного веса оставшихся четырех. Найдите наименьший возможный суммарный вес всех монет.
Задачу решили:
57
всего попыток:
69
Удалите из ряда целых чисел от 8 до 17 включительно наименьшее количество, чтобы произведение оставшихся было точным квадратом. В качестве ответа укажите сумму всех удаленных чисел.
Задачу решили:
48
всего попыток:
98
Хозяин тира предложил Пете награду 3 пули за попадание в цель и штраф 2 пули за промах, а Васе - награду 2 пули за попадание в цель и штраф 3 пули за промах. Обоим было выдано по 10 пуль и оба произвели по 55 выстрелов пока не закончились все пули. Найти отношение количества попаданий в цель Пети к количеству попаданий Васи.
Задачу решили:
53
всего попыток:
74
Несколько бетонных блоков, каждый из которых имеет вес не более одной тонны, вместе весят 10 тонн. Сколько грузовиков, которые могут увезти не более 3-х тонн, заведомо достаточно, чтобы увезти все блоки?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|