Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
44
Боковая сторона трапеции раэделена двумя точками в отношении 6:7:6. Прямые,паралельные основаниям через эти точки делят трапецию на три трапеции с площадями 81, 105, X. Найти X, если известно, что она больше 81.
Задачу решили:
31
всего попыток:
37
В равнобедренном треугольнике ABC с основанием |AC|=2, высотой |BD|=2+√3 вписаны квадраты KLMN и DPRQ. Найти отношение площадей квадратов KL MN и DPRQ.
Задачу решили:
27
всего попыток:
44
Внутри цилиндра расположен куб ABCDA1B1C1D1 так, что все его вершины лежат на поверхности цилиндра, причем вершины B и D1 совпадают с центрами оснований, а остальные вершины лежат на боковой поверхности цилиндра. Найдите объем цилиндра, если квадрат ребра куба равен 27. Объём цилиндра будет иметь вид kπ. В ответе укажите числовой множитель k.
Задачу решили:
27
всего попыток:
30
В равностороннем треугольнике АВС с длиной стороны равной 1 проведена медиана BD и в треугольнике ABD медиана DE. Далее из вершины В в треугольниках ABD, BCD проведены биссектрисы до пересечения с медианой DE в точке F и с центром O вписанной окружности в треугольник BCD. Найти квадрат длины отрезка FO.
Задачу решили:
29
всего попыток:
35
Меньший треугольник равносторонний. Найдите отношение площади меньшего треугольника к площади большего.
Задачу решили:
30
всего попыток:
73
Меньший треугольник равносторонний. Найдите отношение площади шестиугольника к площади большего теругольника.
Задачу решили:
26
всего попыток:
27
Две пары подобных прямоугольных треугольников с площадями 150 и 96 образуют прямоугольник, длины которого равно совмещены с гипотенузами треугольников с площадями 150, а ширины соответственно с гипотенузами треугольников с площадями 96. При этом внутри остается прямоугольная полоска с шириной 1. Найти её длину.
Задачу решили:
39
всего попыток:
41
В правильном шестиугольнике проведена ломаная с указанными на рисунке длинами. Найти длину стороны шестиугольника.
Задачу решили:
32
всего попыток:
43
В треугольнике одна из сторон равна 7, а длины двух других относятся друг к другу как 25:24. Найти наибольшую возможную площадь треугольника.
Задачу решили:
25
всего попыток:
88
При некоторых значениях k на синусоиде y= ksinx можно расположить квадрат, все вершины которого лежат на синусоиде, а его центр совпадает с началом координат. Один из квадратов изображен на рисунке. Сколько таких квадратов существует при k =14?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|