Лента событий:
solomon
решил задачу
"Дырявый квадрат-4"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
53
Пусть a, b и c - различные натуральные числа такие, что 1/a+1/b+1/c=1/42. Чему равно наименьшее значение суммы a+b+c?
Задачу решили:
26
всего попыток:
33
На стороне АВ правильного восьмиугольника ABCDEFGH во внешную сторону построен квадрат ABKL. Две диагонали HD и FC пересекаются в точке О. Найти угол LOK в градусах.
Задачу решили:
28
всего попыток:
29
Из середины сторон треугольника АВС с углами 40°, 60°, 80° проведены перпендикуляры к двум другим сторонам, которые при пересечении образуют шестиугольник внутри. Найти отношение площади шестиугольника к площади треугольника.
Задачу решили:
22
всего попыток:
43
Две равные фигуры сложены из единичных кубиков, одна из белых кубиков, другая – из черных, причем, из этих двух фигур можно сложить куб n×n×n без пустот внутри. Оказалось, что в сложенном кубе число бело-белых соседних кубиков (т. е. имеющих общую грань) равно числу бело-черных соседних кубиков и равно числу черно-черных соседних кубиков. При каком n площадь поверхности одной из фигур в два раза больше площади поверхности куба.
Задачу решили:
28
всего попыток:
30
На сторонах единичного квадрата отметили точки A, B, C и D так, что прямая АС параллельна двум сторонам квадрата, а прямая BD - двум другим сторонам квадрата. Отрезок АВ отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок CD?
Задачу решили:
26
всего попыток:
41
Пусть a, b и c действительные неотрицательные числа такие, что a+b+c=2. Найдите максимум выражения (a2-ab+b2)*(b2-bc+c2)*(c2-ca+a2).
Задачу решили:
26
всего попыток:
32
Найти площадь треугольника, у которого радиусы вписанной и описанной окружностей равны соответственно 24 и 50, синус одного из углов равен 0,96.
Задачу решили:
28
всего попыток:
29
В равностороннем треугольнике АВС с длиной стороны равной 14 проведен отрезок DE, где D - середина стороны АС, Е - точка на стороне АВ так, что угол ADE=75°. Далее из точки Е проведен перпендикуляр к стороне АВ до пересечения со стороной ВС в точке F. Найти периметр треугольника BEF.
Задачу решили:
22
всего попыток:
29
Найдите максимальную сумму a+b+c+d+e+f+g среди всех семёрок целых чисел {a, b, c, d, e, f, g}, для которых выполняется: 0 < a < b < c < d < e < f < g и 1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g = 1/7.
Задачу решили:
17
всего попыток:
37
Любитель комбинаторной геометрии каждый год рисует правильный треугольник, длина стороны которого равна номеру этого года, и прямыми параллельными сторонам треугольника делит его на правильные треугольники со стороной 1. В полученной таким образом треугольной сетке он закрашивает несколько треугольных ячеек так, чтобы они не пересекались, и при этом старается закрасить все узлы треугольной сетки. В 2022 году любителю не удалось это сделать. В каком ближайшем году он сможет закрасить сетку нужным образом? На рисунке приведен пример неудачной раскраски сетки, так как остались три незакрашенных узла.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|