Лента событий:
vochfid решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
7
всего попыток:
18
За какое минимальное количество поворотов на 180 градусов можно "перекрасить" собаку, построенную (сконструированную) из змейки Рубика (см. рисунки)?
Задачу решили:
15
всего попыток:
19
В правильной треугольной пирамиде SABC с основанием ABC точки M и K – середины рёбер AB и SC соответственно, а точки N и L отмечены на рёбрах SA и BC соответственно так, что отрезки MK и NL пересекаются, а |AN|=4|NS|. Найдите отношение |CL|:|LB|.
(Задача из реального теста ЕГЭ 2024.)
Задачу решили:
22
всего попыток:
25
По кругу стоят 7 диванов, на них сидит всего 50 человек, на каждом диване - хотя бы один человек. Каждый сказал:"На следующем по часовой стрелке диване ровно половина людей выше меня, а ровно половина - ниже." Какое наибольшее число людей могло сказать правду?
Задачу решили:
26
всего попыток:
26
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое и так далее числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое и так далее числа. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
17
всего попыток:
25
На сторонах прямоугольного треугольника построены квадраты снаружи с целочисленными значениями площадей. Внутри треугольника вписан квадрат так, что одна из сторон лежит на гипотенузе, а две противоположные вершины лежат на катетах. Площадь квадрата,построенного на одного из катетов, равна 2, площадь внутреннего квадрата равна приблизительно 1 с наибольшим приближением. Найти площадь квадрата, построенного на гипотенузе.
Задачу решили:
14
всего попыток:
42
Одни и те же четыре фигуры – два треуольника и два полиомино – складываются двумя способами в виде "большого треугольника", по такому принципу: 1. Все вершины фигур лежат в узлах квадратной сетки. На самом деле, "большой треугольник" здесь иллюзорен. Угол AKB в одном случае чуть меньше, а в другом чуть больше 180 градусов на одинаковую величину.
Можно повторить тот же фокус и с другой четвёркой фигур – парой треугольников и парой полиомино, складывая их в "большой треугольник" двумя способами по этому же принципу.
В данном примере площадь треугольника ABC (если предположить, что AB это не ломаная, а отрезок) равна 32,5.
Найдите четвёрку таких фигур с минимальной площадью треугольника ABC ("выпрямленного"), при которой абсолютная величина отклонения угла AKB от 180 градусов будет меньше чем в исходном примере. В ответе введите эту площадь.
Задачу решили:
16
всего попыток:
21
На плоскости через точку А проведено 29 прямых, через точку B проведено 34 прямых. Каждая прямая первого пучка пересекают каждую прямую второго пучка, и наоборот. Прямых, принадлежащих обоим пучкам, нет. На сколько частей делят плоскость все эти прямые? Например, на рисунке две прямые пучка А и три прямые пучка B делят плоскость на 15 частей.
Задачу решили:
9
всего попыток:
15
За какое минимальное количество ходов можно из фигуры А змейки Рубика: получить фигуру Б? Покажите пример решения. Ходом считается один поворот двух частей змейки Рубика на 180 градусов вокруг одного шарнира.
Задачу решили:
23
всего попыток:
27
Центр окружности с радиусом 12 находится на гипотенузе,равной 35, и касается с катетами треугольника. Найти площадь треугольника.
Задачу решили:
25
всего попыток:
26
На противоположных берегах реки напротив друг друга растут две пальмы. Высота одной из них 10 м, высота другой - 15 м, расстояние между основаниями пальм 25 м. На верхушке каждой пальмы сидит птица. Внезапно птицы замечают рыбу, выплывшую на поверхности реки между пальмами. Птицы бросаются к рыбе и достигают ее одновременно. На каком расстоянии от основания меньшей пальмы выплыла рыба? (Птицы летят к рыбе по прямым с одинаковой скоростью).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|